![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znchr | Structured version Visualization version GIF version |
Description: Cyclic rings are defined by their characteristic. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
znchr.y | β’ π = (β€/nβ€βπ) |
Ref | Expression |
---|---|
znchr | β’ (π β β0 β (chrβπ) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znchr.y | . . . . . . 7 β’ π = (β€/nβ€βπ) | |
2 | 1 | zncrng 21091 | . . . . . 6 β’ (π β β0 β π β CRing) |
3 | crngring 20061 | . . . . . 6 β’ (π β CRing β π β Ring) | |
4 | 2, 3 | syl 17 | . . . . 5 β’ (π β β0 β π β Ring) |
5 | nn0z 12579 | . . . . 5 β’ (π₯ β β0 β π₯ β β€) | |
6 | eqid 2732 | . . . . . 6 β’ (chrβπ) = (chrβπ) | |
7 | eqid 2732 | . . . . . 6 β’ (β€RHomβπ) = (β€RHomβπ) | |
8 | eqid 2732 | . . . . . 6 β’ (0gβπ) = (0gβπ) | |
9 | 6, 7, 8 | chrdvds 21071 | . . . . 5 β’ ((π β Ring β§ π₯ β β€) β ((chrβπ) β₯ π₯ β ((β€RHomβπ)βπ₯) = (0gβπ))) |
10 | 4, 5, 9 | syl2an 596 | . . . 4 β’ ((π β β0 β§ π₯ β β0) β ((chrβπ) β₯ π₯ β ((β€RHomβπ)βπ₯) = (0gβπ))) |
11 | 1, 7, 8 | zndvds0 21097 | . . . . 5 β’ ((π β β0 β§ π₯ β β€) β (((β€RHomβπ)βπ₯) = (0gβπ) β π β₯ π₯)) |
12 | 5, 11 | sylan2 593 | . . . 4 β’ ((π β β0 β§ π₯ β β0) β (((β€RHomβπ)βπ₯) = (0gβπ) β π β₯ π₯)) |
13 | 10, 12 | bitrd 278 | . . 3 β’ ((π β β0 β§ π₯ β β0) β ((chrβπ) β₯ π₯ β π β₯ π₯)) |
14 | 13 | ralrimiva 3146 | . 2 β’ (π β β0 β βπ₯ β β0 ((chrβπ) β₯ π₯ β π β₯ π₯)) |
15 | 6 | chrcl 21069 | . . . 4 β’ (π β Ring β (chrβπ) β β0) |
16 | 4, 15 | syl 17 | . . 3 β’ (π β β0 β (chrβπ) β β0) |
17 | dvdsext 16260 | . . 3 β’ (((chrβπ) β β0 β§ π β β0) β ((chrβπ) = π β βπ₯ β β0 ((chrβπ) β₯ π₯ β π β₯ π₯))) | |
18 | 16, 17 | mpancom 686 | . 2 β’ (π β β0 β ((chrβπ) = π β βπ₯ β β0 ((chrβπ) β₯ π₯ β π β₯ π₯))) |
19 | 14, 18 | mpbird 256 | 1 β’ (π β β0 β (chrβπ) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 class class class wbr 5147 βcfv 6540 β0cn0 12468 β€cz 12554 β₯ cdvds 16193 0gc0g 17381 Ringcrg 20049 CRingccrg 20050 β€RHomczrh 21040 chrcchr 21042 β€/nβ€czn 21043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-ec 8701 df-qs 8705 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-rp 12971 df-fz 13481 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-dvds 16194 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-0g 17383 df-imas 17450 df-qus 17451 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-nsg 18998 df-eqg 18999 df-ghm 19084 df-od 19390 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-cring 20052 df-oppr 20142 df-dvdsr 20163 df-rnghom 20243 df-subrg 20353 df-lmod 20465 df-lss 20535 df-lsp 20575 df-sra 20777 df-rgmod 20778 df-lidl 20779 df-rsp 20780 df-2idl 20849 df-cnfld 20937 df-zring 21010 df-zrh 21044 df-chr 21046 df-zn 21047 |
This theorem is referenced by: ply1fermltl 32651 |
Copyright terms: Public domain | W3C validator |