| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > znchr | Structured version Visualization version GIF version | ||
| Description: Cyclic rings are defined by their characteristic. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| Ref | Expression |
|---|---|
| znchr.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| Ref | Expression |
|---|---|
| znchr | ⊢ (𝑁 ∈ ℕ0 → (chr‘𝑌) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znchr.y | . . . . . . 7 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 2 | 1 | zncrng 21454 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) |
| 3 | crngring 20154 | . . . . . 6 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ Ring) |
| 5 | nn0z 12554 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℤ) | |
| 6 | eqid 2729 | . . . . . 6 ⊢ (chr‘𝑌) = (chr‘𝑌) | |
| 7 | eqid 2729 | . . . . . 6 ⊢ (ℤRHom‘𝑌) = (ℤRHom‘𝑌) | |
| 8 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝑌) = (0g‘𝑌) | |
| 9 | 6, 7, 8 | chrdvds 21436 | . . . . 5 ⊢ ((𝑌 ∈ Ring ∧ 𝑥 ∈ ℤ) → ((chr‘𝑌) ∥ 𝑥 ↔ ((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌))) |
| 10 | 4, 5, 9 | syl2an 596 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℕ0) → ((chr‘𝑌) ∥ 𝑥 ↔ ((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌))) |
| 11 | 1, 7, 8 | zndvds0 21460 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌) ↔ 𝑁 ∥ 𝑥)) |
| 12 | 5, 11 | sylan2 593 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℕ0) → (((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌) ↔ 𝑁 ∥ 𝑥)) |
| 13 | 10, 12 | bitrd 279 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℕ0) → ((chr‘𝑌) ∥ 𝑥 ↔ 𝑁 ∥ 𝑥)) |
| 14 | 13 | ralrimiva 3125 | . 2 ⊢ (𝑁 ∈ ℕ0 → ∀𝑥 ∈ ℕ0 ((chr‘𝑌) ∥ 𝑥 ↔ 𝑁 ∥ 𝑥)) |
| 15 | 6 | chrcl 21434 | . . . 4 ⊢ (𝑌 ∈ Ring → (chr‘𝑌) ∈ ℕ0) |
| 16 | 4, 15 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (chr‘𝑌) ∈ ℕ0) |
| 17 | dvdsext 16291 | . . 3 ⊢ (((chr‘𝑌) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((chr‘𝑌) = 𝑁 ↔ ∀𝑥 ∈ ℕ0 ((chr‘𝑌) ∥ 𝑥 ↔ 𝑁 ∥ 𝑥))) | |
| 18 | 16, 17 | mpancom 688 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((chr‘𝑌) = 𝑁 ↔ ∀𝑥 ∈ ℕ0 ((chr‘𝑌) ∥ 𝑥 ↔ 𝑁 ∥ 𝑥))) |
| 19 | 14, 18 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℕ0 → (chr‘𝑌) = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 ‘cfv 6511 ℕ0cn0 12442 ℤcz 12529 ∥ cdvds 16222 0gc0g 17402 Ringcrg 20142 CRingccrg 20143 ℤRHomczrh 21409 chrcchr 21411 ℤ/nℤczn 21412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-ec 8673 df-qs 8677 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-imas 17471 df-qus 17472 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-nsg 19056 df-eqg 19057 df-ghm 19145 df-od 19458 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 df-2idl 21160 df-cnfld 21265 df-zring 21357 df-zrh 21413 df-chr 21415 df-zn 21416 |
| This theorem is referenced by: ply1fermltl 33553 |
| Copyright terms: Public domain | W3C validator |