MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znchr Structured version   Visualization version   GIF version

Theorem znchr 20682
Description: Cyclic rings are defined by their characteristic. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypothesis
Ref Expression
znchr.y 𝑌 = (ℤ/nℤ‘𝑁)
Assertion
Ref Expression
znchr (𝑁 ∈ ℕ0 → (chr‘𝑌) = 𝑁)

Proof of Theorem znchr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 znchr.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑁)
21zncrng 20664 . . . . . 6 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
3 crngring 19710 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
42, 3syl 17 . . . . 5 (𝑁 ∈ ℕ0𝑌 ∈ Ring)
5 nn0z 12273 . . . . 5 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
6 eqid 2738 . . . . . 6 (chr‘𝑌) = (chr‘𝑌)
7 eqid 2738 . . . . . 6 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
8 eqid 2738 . . . . . 6 (0g𝑌) = (0g𝑌)
96, 7, 8chrdvds 20644 . . . . 5 ((𝑌 ∈ Ring ∧ 𝑥 ∈ ℤ) → ((chr‘𝑌) ∥ 𝑥 ↔ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌)))
104, 5, 9syl2an 595 . . . 4 ((𝑁 ∈ ℕ0𝑥 ∈ ℕ0) → ((chr‘𝑌) ∥ 𝑥 ↔ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌)))
111, 7, 8zndvds0 20670 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑥) = (0g𝑌) ↔ 𝑁𝑥))
125, 11sylan2 592 . . . 4 ((𝑁 ∈ ℕ0𝑥 ∈ ℕ0) → (((ℤRHom‘𝑌)‘𝑥) = (0g𝑌) ↔ 𝑁𝑥))
1310, 12bitrd 278 . . 3 ((𝑁 ∈ ℕ0𝑥 ∈ ℕ0) → ((chr‘𝑌) ∥ 𝑥𝑁𝑥))
1413ralrimiva 3107 . 2 (𝑁 ∈ ℕ0 → ∀𝑥 ∈ ℕ0 ((chr‘𝑌) ∥ 𝑥𝑁𝑥))
156chrcl 20642 . . . 4 (𝑌 ∈ Ring → (chr‘𝑌) ∈ ℕ0)
164, 15syl 17 . . 3 (𝑁 ∈ ℕ0 → (chr‘𝑌) ∈ ℕ0)
17 dvdsext 15958 . . 3 (((chr‘𝑌) ∈ ℕ0𝑁 ∈ ℕ0) → ((chr‘𝑌) = 𝑁 ↔ ∀𝑥 ∈ ℕ0 ((chr‘𝑌) ∥ 𝑥𝑁𝑥)))
1816, 17mpancom 684 . 2 (𝑁 ∈ ℕ0 → ((chr‘𝑌) = 𝑁 ↔ ∀𝑥 ∈ ℕ0 ((chr‘𝑌) ∥ 𝑥𝑁𝑥)))
1914, 18mpbird 256 1 (𝑁 ∈ ℕ0 → (chr‘𝑌) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  cfv 6418  0cn0 12163  cz 12249  cdvds 15891  0gc0g 17067  Ringcrg 19698  CRingccrg 19699  ℤRHomczrh 20613  chrcchr 20615  ℤ/nczn 20616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-imas 17136  df-qus 17137  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-nsg 18668  df-eqg 18669  df-ghm 18747  df-od 19051  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-rnghom 19874  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-2idl 20416  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-chr 20619  df-zn 20620
This theorem is referenced by:  ply1fermltl  31572
  Copyright terms: Public domain W3C validator