![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pidlnz | Structured version Visualization version GIF version |
Description: A principal ideal generated by a nonzero element is not the zero ideal. (Contributed by Thierry Arnoux, 11-Apr-2024.) |
Ref | Expression |
---|---|
pidlnz.1 | β’ π΅ = (Baseβπ ) |
pidlnz.2 | β’ 0 = (0gβπ ) |
pidlnz.3 | β’ πΎ = (RSpanβπ ) |
Ref | Expression |
---|---|
pidlnz | β’ ((π β Ring β§ π β π΅ β§ π β 0 ) β (πΎβ{π}) β { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1188 | . . . . . 6 β’ (((π β Ring β§ π β π΅ β§ π β 0 ) β§ (πΎβ{π}) = { 0 }) β π β Ring) | |
2 | simpl2 1189 | . . . . . 6 β’ (((π β Ring β§ π β π΅ β§ π β 0 ) β§ (πΎβ{π}) = { 0 }) β π β π΅) | |
3 | pidlnz.1 | . . . . . . 7 β’ π΅ = (Baseβπ ) | |
4 | pidlnz.3 | . . . . . . 7 β’ πΎ = (RSpanβπ ) | |
5 | 3, 4 | rspsnid 33108 | . . . . . 6 β’ ((π β Ring β§ π β π΅) β π β (πΎβ{π})) |
6 | 1, 2, 5 | syl2anc 582 | . . . . 5 β’ (((π β Ring β§ π β π΅ β§ π β 0 ) β§ (πΎβ{π}) = { 0 }) β π β (πΎβ{π})) |
7 | simpr 483 | . . . . 5 β’ (((π β Ring β§ π β π΅ β§ π β 0 ) β§ (πΎβ{π}) = { 0 }) β (πΎβ{π}) = { 0 }) | |
8 | 6, 7 | eleqtrd 2831 | . . . 4 β’ (((π β Ring β§ π β π΅ β§ π β 0 ) β§ (πΎβ{π}) = { 0 }) β π β { 0 }) |
9 | elsni 4649 | . . . 4 β’ (π β { 0 } β π = 0 ) | |
10 | 8, 9 | syl 17 | . . 3 β’ (((π β Ring β§ π β π΅ β§ π β 0 ) β§ (πΎβ{π}) = { 0 }) β π = 0 ) |
11 | simpl3 1190 | . . . 4 β’ (((π β Ring β§ π β π΅ β§ π β 0 ) β§ (πΎβ{π}) = { 0 }) β π β 0 ) | |
12 | 11 | neneqd 2942 | . . 3 β’ (((π β Ring β§ π β π΅ β§ π β 0 ) β§ (πΎβ{π}) = { 0 }) β Β¬ π = 0 ) |
13 | 10, 12 | pm2.65da 815 | . 2 β’ ((π β Ring β§ π β π΅ β§ π β 0 ) β Β¬ (πΎβ{π}) = { 0 }) |
14 | 13 | neqned 2944 | 1 β’ ((π β Ring β§ π β π΅ β§ π β 0 ) β (πΎβ{π}) β { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2937 {csn 4632 βcfv 6553 Basecbs 17187 0gc0g 17428 Ringcrg 20180 RSpancrsp 21110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-sca 17256 df-vsca 17257 df-ip 17258 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-grp 18900 df-subg 19085 df-mgp 20082 df-ur 20129 df-ring 20182 df-subrg 20515 df-lmod 20752 df-lss 20823 df-lsp 20863 df-sra 21065 df-rgmod 21066 df-rsp 21112 |
This theorem is referenced by: pidlnzb 33162 drngidl 33174 minplym1p 33416 |
Copyright terms: Public domain | W3C validator |