MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlema Structured version   Visualization version   GIF version

Theorem efgredlema 19721
Description: The reduced word that forms the base of the sequence in efgsval 19712 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
Assertion
Ref Expression
efgredlema (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgredlema
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 efgredlem.5 . . . . 5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
2 efgredlem.3 . . . . . . . . 9 (𝜑𝐵 ∈ dom 𝑆)
3 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2o))
4 efgval.r . . . . . . . . . 10 = ( ~FG𝐼)
5 efgval2.m . . . . . . . . . 10 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
6 efgval2.t . . . . . . . . . 10 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
7 efgred.d . . . . . . . . . 10 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
8 efgred.s . . . . . . . . . 10 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
93, 4, 5, 6, 7, 8efgsval 19712 . . . . . . . . 9 (𝐵 ∈ dom 𝑆 → (𝑆𝐵) = (𝐵‘((♯‘𝐵) − 1)))
102, 9syl 17 . . . . . . . 8 (𝜑 → (𝑆𝐵) = (𝐵‘((♯‘𝐵) − 1)))
11 efgredlem.4 . . . . . . . . 9 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
12 efgredlem.2 . . . . . . . . . 10 (𝜑𝐴 ∈ dom 𝑆)
133, 4, 5, 6, 7, 8efgsval 19712 . . . . . . . . . 10 (𝐴 ∈ dom 𝑆 → (𝑆𝐴) = (𝐴‘((♯‘𝐴) − 1)))
1412, 13syl 17 . . . . . . . . 9 (𝜑 → (𝑆𝐴) = (𝐴‘((♯‘𝐴) − 1)))
1511, 14eqtr3d 2772 . . . . . . . 8 (𝜑 → (𝑆𝐵) = (𝐴‘((♯‘𝐴) − 1)))
1610, 15eqtr3d 2772 . . . . . . 7 (𝜑 → (𝐵‘((♯‘𝐵) − 1)) = (𝐴‘((♯‘𝐴) − 1)))
17 oveq1 7412 . . . . . . . . 9 ((♯‘𝐴) = 1 → ((♯‘𝐴) − 1) = (1 − 1))
18 1m1e0 12312 . . . . . . . . 9 (1 − 1) = 0
1917, 18eqtrdi 2786 . . . . . . . 8 ((♯‘𝐴) = 1 → ((♯‘𝐴) − 1) = 0)
2019fveq2d 6880 . . . . . . 7 ((♯‘𝐴) = 1 → (𝐴‘((♯‘𝐴) − 1)) = (𝐴‘0))
2116, 20sylan9eq 2790 . . . . . 6 ((𝜑 ∧ (♯‘𝐴) = 1) → (𝐵‘((♯‘𝐵) − 1)) = (𝐴‘0))
2211eleq1d 2819 . . . . . . . . 9 (𝜑 → ((𝑆𝐴) ∈ 𝐷 ↔ (𝑆𝐵) ∈ 𝐷))
233, 4, 5, 6, 7, 8efgs1b 19717 . . . . . . . . . 10 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1))
2412, 23syl 17 . . . . . . . . 9 (𝜑 → ((𝑆𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1))
253, 4, 5, 6, 7, 8efgs1b 19717 . . . . . . . . . 10 (𝐵 ∈ dom 𝑆 → ((𝑆𝐵) ∈ 𝐷 ↔ (♯‘𝐵) = 1))
262, 25syl 17 . . . . . . . . 9 (𝜑 → ((𝑆𝐵) ∈ 𝐷 ↔ (♯‘𝐵) = 1))
2722, 24, 263bitr3d 309 . . . . . . . 8 (𝜑 → ((♯‘𝐴) = 1 ↔ (♯‘𝐵) = 1))
2827biimpa 476 . . . . . . 7 ((𝜑 ∧ (♯‘𝐴) = 1) → (♯‘𝐵) = 1)
29 oveq1 7412 . . . . . . . . 9 ((♯‘𝐵) = 1 → ((♯‘𝐵) − 1) = (1 − 1))
3029, 18eqtrdi 2786 . . . . . . . 8 ((♯‘𝐵) = 1 → ((♯‘𝐵) − 1) = 0)
3130fveq2d 6880 . . . . . . 7 ((♯‘𝐵) = 1 → (𝐵‘((♯‘𝐵) − 1)) = (𝐵‘0))
3228, 31syl 17 . . . . . 6 ((𝜑 ∧ (♯‘𝐴) = 1) → (𝐵‘((♯‘𝐵) − 1)) = (𝐵‘0))
3321, 32eqtr3d 2772 . . . . 5 ((𝜑 ∧ (♯‘𝐴) = 1) → (𝐴‘0) = (𝐵‘0))
341, 33mtand 815 . . . 4 (𝜑 → ¬ (♯‘𝐴) = 1)
353, 4, 5, 6, 7, 8efgsdm 19711 . . . . . . . 8 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑢 ∈ (1..^(♯‘𝐴))(𝐴𝑢) ∈ ran (𝑇‘(𝐴‘(𝑢 − 1)))))
3635simp1bi 1145 . . . . . . 7 (𝐴 ∈ dom 𝑆𝐴 ∈ (Word 𝑊 ∖ {∅}))
37 eldifsn 4762 . . . . . . . 8 (𝐴 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐴 ∈ Word 𝑊𝐴 ≠ ∅))
38 lennncl 14552 . . . . . . . 8 ((𝐴 ∈ Word 𝑊𝐴 ≠ ∅) → (♯‘𝐴) ∈ ℕ)
3937, 38sylbi 217 . . . . . . 7 (𝐴 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝐴) ∈ ℕ)
4012, 36, 393syl 18 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℕ)
41 elnn1uz2 12941 . . . . . 6 ((♯‘𝐴) ∈ ℕ ↔ ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈ (ℤ‘2)))
4240, 41sylib 218 . . . . 5 (𝜑 → ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈ (ℤ‘2)))
4342ord 864 . . . 4 (𝜑 → (¬ (♯‘𝐴) = 1 → (♯‘𝐴) ∈ (ℤ‘2)))
4434, 43mpd 15 . . 3 (𝜑 → (♯‘𝐴) ∈ (ℤ‘2))
45 uz2m1nn 12939 . . 3 ((♯‘𝐴) ∈ (ℤ‘2) → ((♯‘𝐴) − 1) ∈ ℕ)
4644, 45syl 17 . 2 (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ)
4734, 27mtbid 324 . . . 4 (𝜑 → ¬ (♯‘𝐵) = 1)
483, 4, 5, 6, 7, 8efgsdm 19711 . . . . . . . 8 (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑢 ∈ (1..^(♯‘𝐵))(𝐵𝑢) ∈ ran (𝑇‘(𝐵‘(𝑢 − 1)))))
4948simp1bi 1145 . . . . . . 7 (𝐵 ∈ dom 𝑆𝐵 ∈ (Word 𝑊 ∖ {∅}))
50 eldifsn 4762 . . . . . . . 8 (𝐵 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐵 ∈ Word 𝑊𝐵 ≠ ∅))
51 lennncl 14552 . . . . . . . 8 ((𝐵 ∈ Word 𝑊𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℕ)
5250, 51sylbi 217 . . . . . . 7 (𝐵 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝐵) ∈ ℕ)
532, 49, 523syl 18 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℕ)
54 elnn1uz2 12941 . . . . . 6 ((♯‘𝐵) ∈ ℕ ↔ ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈ (ℤ‘2)))
5553, 54sylib 218 . . . . 5 (𝜑 → ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈ (ℤ‘2)))
5655ord 864 . . . 4 (𝜑 → (¬ (♯‘𝐵) = 1 → (♯‘𝐵) ∈ (ℤ‘2)))
5747, 56mpd 15 . . 3 (𝜑 → (♯‘𝐵) ∈ (ℤ‘2))
58 uz2m1nn 12939 . . 3 ((♯‘𝐵) ∈ (ℤ‘2) → ((♯‘𝐵) − 1) ∈ ℕ)
5957, 58syl 17 . 2 (𝜑 → ((♯‘𝐵) − 1) ∈ ℕ)
6046, 59jca 511 1 (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  cdif 3923  c0 4308  {csn 4601  cop 4607  cotp 4609   ciun 4967   class class class wbr 5119  cmpt 5201   I cid 5547   × cxp 5652  dom cdm 5654  ran crn 5655  cfv 6531  (class class class)co 7405  cmpo 7407  1oc1o 8473  2oc2o 8474  0cc0 11129  1c1 11130   < clt 11269  cmin 11466  cn 12240  2c2 12295  cuz 12852  ...cfz 13524  ..^cfzo 13671  chash 14348  Word cword 14531   splice csplice 14767  ⟨“cs2 14860   ~FG cefg 19687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532
This theorem is referenced by:  efgredlemf  19722  efgredlemg  19723  efgredlemd  19725  efgredlemc  19726  efgredlem  19728
  Copyright terms: Public domain W3C validator