MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlema Structured version   Visualization version   GIF version

Theorem efgredlema 18615
Description: The reduced word that forms the base of the sequence in efgsval 18605 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
Assertion
Ref Expression
efgredlema (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgredlema
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 efgredlem.5 . . . . 5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
2 efgredlem.3 . . . . . . . . 9 (𝜑𝐵 ∈ dom 𝑆)
3 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2o))
4 efgval.r . . . . . . . . . 10 = ( ~FG𝐼)
5 efgval2.m . . . . . . . . . 10 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
6 efgval2.t . . . . . . . . . 10 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
7 efgred.d . . . . . . . . . 10 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
8 efgred.s . . . . . . . . . 10 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
93, 4, 5, 6, 7, 8efgsval 18605 . . . . . . . . 9 (𝐵 ∈ dom 𝑆 → (𝑆𝐵) = (𝐵‘((♯‘𝐵) − 1)))
102, 9syl 17 . . . . . . . 8 (𝜑 → (𝑆𝐵) = (𝐵‘((♯‘𝐵) − 1)))
11 efgredlem.4 . . . . . . . . 9 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
12 efgredlem.2 . . . . . . . . . 10 (𝜑𝐴 ∈ dom 𝑆)
133, 4, 5, 6, 7, 8efgsval 18605 . . . . . . . . . 10 (𝐴 ∈ dom 𝑆 → (𝑆𝐴) = (𝐴‘((♯‘𝐴) − 1)))
1412, 13syl 17 . . . . . . . . 9 (𝜑 → (𝑆𝐴) = (𝐴‘((♯‘𝐴) − 1)))
1511, 14eqtr3d 2810 . . . . . . . 8 (𝜑 → (𝑆𝐵) = (𝐴‘((♯‘𝐴) − 1)))
1610, 15eqtr3d 2810 . . . . . . 7 (𝜑 → (𝐵‘((♯‘𝐵) − 1)) = (𝐴‘((♯‘𝐴) − 1)))
17 oveq1 6977 . . . . . . . . 9 ((♯‘𝐴) = 1 → ((♯‘𝐴) − 1) = (1 − 1))
18 1m1e0 11505 . . . . . . . . 9 (1 − 1) = 0
1917, 18syl6eq 2824 . . . . . . . 8 ((♯‘𝐴) = 1 → ((♯‘𝐴) − 1) = 0)
2019fveq2d 6497 . . . . . . 7 ((♯‘𝐴) = 1 → (𝐴‘((♯‘𝐴) − 1)) = (𝐴‘0))
2116, 20sylan9eq 2828 . . . . . 6 ((𝜑 ∧ (♯‘𝐴) = 1) → (𝐵‘((♯‘𝐵) − 1)) = (𝐴‘0))
2211eleq1d 2844 . . . . . . . . 9 (𝜑 → ((𝑆𝐴) ∈ 𝐷 ↔ (𝑆𝐵) ∈ 𝐷))
233, 4, 5, 6, 7, 8efgs1b 18610 . . . . . . . . . 10 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1))
2412, 23syl 17 . . . . . . . . 9 (𝜑 → ((𝑆𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1))
253, 4, 5, 6, 7, 8efgs1b 18610 . . . . . . . . . 10 (𝐵 ∈ dom 𝑆 → ((𝑆𝐵) ∈ 𝐷 ↔ (♯‘𝐵) = 1))
262, 25syl 17 . . . . . . . . 9 (𝜑 → ((𝑆𝐵) ∈ 𝐷 ↔ (♯‘𝐵) = 1))
2722, 24, 263bitr3d 301 . . . . . . . 8 (𝜑 → ((♯‘𝐴) = 1 ↔ (♯‘𝐵) = 1))
2827biimpa 469 . . . . . . 7 ((𝜑 ∧ (♯‘𝐴) = 1) → (♯‘𝐵) = 1)
29 oveq1 6977 . . . . . . . . 9 ((♯‘𝐵) = 1 → ((♯‘𝐵) − 1) = (1 − 1))
3029, 18syl6eq 2824 . . . . . . . 8 ((♯‘𝐵) = 1 → ((♯‘𝐵) − 1) = 0)
3130fveq2d 6497 . . . . . . 7 ((♯‘𝐵) = 1 → (𝐵‘((♯‘𝐵) − 1)) = (𝐵‘0))
3228, 31syl 17 . . . . . 6 ((𝜑 ∧ (♯‘𝐴) = 1) → (𝐵‘((♯‘𝐵) − 1)) = (𝐵‘0))
3321, 32eqtr3d 2810 . . . . 5 ((𝜑 ∧ (♯‘𝐴) = 1) → (𝐴‘0) = (𝐵‘0))
341, 33mtand 803 . . . 4 (𝜑 → ¬ (♯‘𝐴) = 1)
353, 4, 5, 6, 7, 8efgsdm 18604 . . . . . . . 8 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑢 ∈ (1..^(♯‘𝐴))(𝐴𝑢) ∈ ran (𝑇‘(𝐴‘(𝑢 − 1)))))
3635simp1bi 1125 . . . . . . 7 (𝐴 ∈ dom 𝑆𝐴 ∈ (Word 𝑊 ∖ {∅}))
37 eldifsn 4587 . . . . . . . 8 (𝐴 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐴 ∈ Word 𝑊𝐴 ≠ ∅))
38 lennncl 13685 . . . . . . . 8 ((𝐴 ∈ Word 𝑊𝐴 ≠ ∅) → (♯‘𝐴) ∈ ℕ)
3937, 38sylbi 209 . . . . . . 7 (𝐴 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝐴) ∈ ℕ)
4012, 36, 393syl 18 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℕ)
41 elnn1uz2 12132 . . . . . 6 ((♯‘𝐴) ∈ ℕ ↔ ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈ (ℤ‘2)))
4240, 41sylib 210 . . . . 5 (𝜑 → ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈ (ℤ‘2)))
4342ord 850 . . . 4 (𝜑 → (¬ (♯‘𝐴) = 1 → (♯‘𝐴) ∈ (ℤ‘2)))
4434, 43mpd 15 . . 3 (𝜑 → (♯‘𝐴) ∈ (ℤ‘2))
45 uz2m1nn 12130 . . 3 ((♯‘𝐴) ∈ (ℤ‘2) → ((♯‘𝐴) − 1) ∈ ℕ)
4644, 45syl 17 . 2 (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ)
4734, 27mtbid 316 . . . 4 (𝜑 → ¬ (♯‘𝐵) = 1)
483, 4, 5, 6, 7, 8efgsdm 18604 . . . . . . . 8 (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑢 ∈ (1..^(♯‘𝐵))(𝐵𝑢) ∈ ran (𝑇‘(𝐵‘(𝑢 − 1)))))
4948simp1bi 1125 . . . . . . 7 (𝐵 ∈ dom 𝑆𝐵 ∈ (Word 𝑊 ∖ {∅}))
50 eldifsn 4587 . . . . . . . 8 (𝐵 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐵 ∈ Word 𝑊𝐵 ≠ ∅))
51 lennncl 13685 . . . . . . . 8 ((𝐵 ∈ Word 𝑊𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℕ)
5250, 51sylbi 209 . . . . . . 7 (𝐵 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝐵) ∈ ℕ)
532, 49, 523syl 18 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℕ)
54 elnn1uz2 12132 . . . . . 6 ((♯‘𝐵) ∈ ℕ ↔ ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈ (ℤ‘2)))
5553, 54sylib 210 . . . . 5 (𝜑 → ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈ (ℤ‘2)))
5655ord 850 . . . 4 (𝜑 → (¬ (♯‘𝐵) = 1 → (♯‘𝐵) ∈ (ℤ‘2)))
5747, 56mpd 15 . . 3 (𝜑 → (♯‘𝐵) ∈ (ℤ‘2))
58 uz2m1nn 12130 . . 3 ((♯‘𝐵) ∈ (ℤ‘2) → ((♯‘𝐵) − 1) ∈ ℕ)
5957, 58syl 17 . 2 (𝜑 → ((♯‘𝐵) − 1) ∈ ℕ)
6046, 59jca 504 1 (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833   = wceq 1507  wcel 2048  wne 2961  wral 3082  {crab 3086  cdif 3822  c0 4173  {csn 4435  cop 4441  cotp 4443   ciun 4786   class class class wbr 4923  cmpt 5002   I cid 5304   × cxp 5398  dom cdm 5400  ran crn 5401  cfv 6182  (class class class)co 6970  cmpo 6972  1oc1o 7890  2oc2o 7891  0cc0 10327  1c1 10328   < clt 10466  cmin 10662  cn 11431  2c2 11488  cuz 12051  ...cfz 12701  ..^cfzo 12842  chash 13498  Word cword 13662   splice csplice 13948  ⟨“cs2 14055   ~FG cefg 18580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-oadd 7901  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-card 9154  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-n0 11701  df-z 11787  df-uz 12052  df-fz 12702  df-fzo 12843  df-hash 13499  df-word 13663
This theorem is referenced by:  efgredlemf  18616  efgredlemg  18617  efgredlemd  18619  efgredlemc  18620  efgredlem  18622  efgredlemOLD  18623
  Copyright terms: Public domain W3C validator