MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlema Structured version   Visualization version   GIF version

Theorem efgredlema 19773
Description: The reduced word that forms the base of the sequence in efgsval 19764 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
Assertion
Ref Expression
efgredlema (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgredlema
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 efgredlem.5 . . . . 5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
2 efgredlem.3 . . . . . . . . 9 (𝜑𝐵 ∈ dom 𝑆)
3 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2o))
4 efgval.r . . . . . . . . . 10 = ( ~FG𝐼)
5 efgval2.m . . . . . . . . . 10 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
6 efgval2.t . . . . . . . . . 10 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
7 efgred.d . . . . . . . . . 10 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
8 efgred.s . . . . . . . . . 10 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
93, 4, 5, 6, 7, 8efgsval 19764 . . . . . . . . 9 (𝐵 ∈ dom 𝑆 → (𝑆𝐵) = (𝐵‘((♯‘𝐵) − 1)))
102, 9syl 17 . . . . . . . 8 (𝜑 → (𝑆𝐵) = (𝐵‘((♯‘𝐵) − 1)))
11 efgredlem.4 . . . . . . . . 9 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
12 efgredlem.2 . . . . . . . . . 10 (𝜑𝐴 ∈ dom 𝑆)
133, 4, 5, 6, 7, 8efgsval 19764 . . . . . . . . . 10 (𝐴 ∈ dom 𝑆 → (𝑆𝐴) = (𝐴‘((♯‘𝐴) − 1)))
1412, 13syl 17 . . . . . . . . 9 (𝜑 → (𝑆𝐴) = (𝐴‘((♯‘𝐴) − 1)))
1511, 14eqtr3d 2777 . . . . . . . 8 (𝜑 → (𝑆𝐵) = (𝐴‘((♯‘𝐴) − 1)))
1610, 15eqtr3d 2777 . . . . . . 7 (𝜑 → (𝐵‘((♯‘𝐵) − 1)) = (𝐴‘((♯‘𝐴) − 1)))
17 oveq1 7438 . . . . . . . . 9 ((♯‘𝐴) = 1 → ((♯‘𝐴) − 1) = (1 − 1))
18 1m1e0 12336 . . . . . . . . 9 (1 − 1) = 0
1917, 18eqtrdi 2791 . . . . . . . 8 ((♯‘𝐴) = 1 → ((♯‘𝐴) − 1) = 0)
2019fveq2d 6911 . . . . . . 7 ((♯‘𝐴) = 1 → (𝐴‘((♯‘𝐴) − 1)) = (𝐴‘0))
2116, 20sylan9eq 2795 . . . . . 6 ((𝜑 ∧ (♯‘𝐴) = 1) → (𝐵‘((♯‘𝐵) − 1)) = (𝐴‘0))
2211eleq1d 2824 . . . . . . . . 9 (𝜑 → ((𝑆𝐴) ∈ 𝐷 ↔ (𝑆𝐵) ∈ 𝐷))
233, 4, 5, 6, 7, 8efgs1b 19769 . . . . . . . . . 10 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1))
2412, 23syl 17 . . . . . . . . 9 (𝜑 → ((𝑆𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1))
253, 4, 5, 6, 7, 8efgs1b 19769 . . . . . . . . . 10 (𝐵 ∈ dom 𝑆 → ((𝑆𝐵) ∈ 𝐷 ↔ (♯‘𝐵) = 1))
262, 25syl 17 . . . . . . . . 9 (𝜑 → ((𝑆𝐵) ∈ 𝐷 ↔ (♯‘𝐵) = 1))
2722, 24, 263bitr3d 309 . . . . . . . 8 (𝜑 → ((♯‘𝐴) = 1 ↔ (♯‘𝐵) = 1))
2827biimpa 476 . . . . . . 7 ((𝜑 ∧ (♯‘𝐴) = 1) → (♯‘𝐵) = 1)
29 oveq1 7438 . . . . . . . . 9 ((♯‘𝐵) = 1 → ((♯‘𝐵) − 1) = (1 − 1))
3029, 18eqtrdi 2791 . . . . . . . 8 ((♯‘𝐵) = 1 → ((♯‘𝐵) − 1) = 0)
3130fveq2d 6911 . . . . . . 7 ((♯‘𝐵) = 1 → (𝐵‘((♯‘𝐵) − 1)) = (𝐵‘0))
3228, 31syl 17 . . . . . 6 ((𝜑 ∧ (♯‘𝐴) = 1) → (𝐵‘((♯‘𝐵) − 1)) = (𝐵‘0))
3321, 32eqtr3d 2777 . . . . 5 ((𝜑 ∧ (♯‘𝐴) = 1) → (𝐴‘0) = (𝐵‘0))
341, 33mtand 816 . . . 4 (𝜑 → ¬ (♯‘𝐴) = 1)
353, 4, 5, 6, 7, 8efgsdm 19763 . . . . . . . 8 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑢 ∈ (1..^(♯‘𝐴))(𝐴𝑢) ∈ ran (𝑇‘(𝐴‘(𝑢 − 1)))))
3635simp1bi 1144 . . . . . . 7 (𝐴 ∈ dom 𝑆𝐴 ∈ (Word 𝑊 ∖ {∅}))
37 eldifsn 4791 . . . . . . . 8 (𝐴 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐴 ∈ Word 𝑊𝐴 ≠ ∅))
38 lennncl 14569 . . . . . . . 8 ((𝐴 ∈ Word 𝑊𝐴 ≠ ∅) → (♯‘𝐴) ∈ ℕ)
3937, 38sylbi 217 . . . . . . 7 (𝐴 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝐴) ∈ ℕ)
4012, 36, 393syl 18 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℕ)
41 elnn1uz2 12965 . . . . . 6 ((♯‘𝐴) ∈ ℕ ↔ ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈ (ℤ‘2)))
4240, 41sylib 218 . . . . 5 (𝜑 → ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈ (ℤ‘2)))
4342ord 864 . . . 4 (𝜑 → (¬ (♯‘𝐴) = 1 → (♯‘𝐴) ∈ (ℤ‘2)))
4434, 43mpd 15 . . 3 (𝜑 → (♯‘𝐴) ∈ (ℤ‘2))
45 uz2m1nn 12963 . . 3 ((♯‘𝐴) ∈ (ℤ‘2) → ((♯‘𝐴) − 1) ∈ ℕ)
4644, 45syl 17 . 2 (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ)
4734, 27mtbid 324 . . . 4 (𝜑 → ¬ (♯‘𝐵) = 1)
483, 4, 5, 6, 7, 8efgsdm 19763 . . . . . . . 8 (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑢 ∈ (1..^(♯‘𝐵))(𝐵𝑢) ∈ ran (𝑇‘(𝐵‘(𝑢 − 1)))))
4948simp1bi 1144 . . . . . . 7 (𝐵 ∈ dom 𝑆𝐵 ∈ (Word 𝑊 ∖ {∅}))
50 eldifsn 4791 . . . . . . . 8 (𝐵 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐵 ∈ Word 𝑊𝐵 ≠ ∅))
51 lennncl 14569 . . . . . . . 8 ((𝐵 ∈ Word 𝑊𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℕ)
5250, 51sylbi 217 . . . . . . 7 (𝐵 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝐵) ∈ ℕ)
532, 49, 523syl 18 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℕ)
54 elnn1uz2 12965 . . . . . 6 ((♯‘𝐵) ∈ ℕ ↔ ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈ (ℤ‘2)))
5553, 54sylib 218 . . . . 5 (𝜑 → ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈ (ℤ‘2)))
5655ord 864 . . . 4 (𝜑 → (¬ (♯‘𝐵) = 1 → (♯‘𝐵) ∈ (ℤ‘2)))
5747, 56mpd 15 . . 3 (𝜑 → (♯‘𝐵) ∈ (ℤ‘2))
58 uz2m1nn 12963 . . 3 ((♯‘𝐵) ∈ (ℤ‘2) → ((♯‘𝐵) − 1) ∈ ℕ)
5957, 58syl 17 . 2 (𝜑 → ((♯‘𝐵) − 1) ∈ ℕ)
6046, 59jca 511 1 (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  wral 3059  {crab 3433  cdif 3960  c0 4339  {csn 4631  cop 4637  cotp 4639   ciun 4996   class class class wbr 5148  cmpt 5231   I cid 5582   × cxp 5687  dom cdm 5689  ran crn 5690  cfv 6563  (class class class)co 7431  cmpo 7433  1oc1o 8498  2oc2o 8499  0cc0 11153  1c1 11154   < clt 11293  cmin 11490  cn 12264  2c2 12319  cuz 12876  ...cfz 13544  ..^cfzo 13691  chash 14366  Word cword 14549   splice csplice 14784  ⟨“cs2 14877   ~FG cefg 19739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550
This theorem is referenced by:  efgredlemf  19774  efgredlemg  19775  efgredlemd  19777  efgredlemc  19778  efgredlem  19780
  Copyright terms: Public domain W3C validator