![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgsval | Structured version Visualization version GIF version |
Description: Value of the auxiliary function π defining a sequence of extensions. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
efgval.w | β’ π = ( I βWord (πΌ Γ 2o)) |
efgval.r | β’ βΌ = ( ~FG βπΌ) |
efgval2.m | β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) |
efgval2.t | β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) |
efgred.d | β’ π· = (π β βͺ π₯ β π ran (πβπ₯)) |
efgred.s | β’ π = (π β {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) |
Ref | Expression |
---|---|
efgsval | β’ (πΉ β dom π β (πβπΉ) = (πΉβ((β―βπΉ) β 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 β’ (π = πΉ β π = πΉ) | |
2 | fveq2 6890 | . . . . 5 β’ (π = πΉ β (β―βπ) = (β―βπΉ)) | |
3 | 2 | oveq1d 7426 | . . . 4 β’ (π = πΉ β ((β―βπ) β 1) = ((β―βπΉ) β 1)) |
4 | 1, 3 | fveq12d 6897 | . . 3 β’ (π = πΉ β (πβ((β―βπ) β 1)) = (πΉβ((β―βπΉ) β 1))) |
5 | efgred.s | . . . 4 β’ π = (π β {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) | |
6 | id 22 | . . . . . 6 β’ (π = π β π = π) | |
7 | fveq2 6890 | . . . . . . 7 β’ (π = π β (β―βπ) = (β―βπ)) | |
8 | 7 | oveq1d 7426 | . . . . . 6 β’ (π = π β ((β―βπ) β 1) = ((β―βπ) β 1)) |
9 | 6, 8 | fveq12d 6897 | . . . . 5 β’ (π = π β (πβ((β―βπ) β 1)) = (πβ((β―βπ) β 1))) |
10 | 9 | cbvmptv 5260 | . . . 4 β’ (π β {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) = (π β {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) |
11 | 5, 10 | eqtri 2758 | . . 3 β’ π = (π β {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) |
12 | fvex 6903 | . . 3 β’ (πΉβ((β―βπΉ) β 1)) β V | |
13 | 4, 11, 12 | fvmpt 6997 | . 2 β’ (πΉ β {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β (πβπΉ) = (πΉβ((β―βπΉ) β 1))) |
14 | efgval.w | . . . 4 β’ π = ( I βWord (πΌ Γ 2o)) | |
15 | efgval.r | . . . 4 β’ βΌ = ( ~FG βπΌ) | |
16 | efgval2.m | . . . 4 β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) | |
17 | efgval2.t | . . . 4 β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) | |
18 | efgred.d | . . . 4 β’ π· = (π β βͺ π₯ β π ran (πβπ₯)) | |
19 | 14, 15, 16, 17, 18, 5 | efgsf 19638 | . . 3 β’ π:{π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))}βΆπ |
20 | 19 | fdmi 6728 | . 2 β’ dom π = {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} |
21 | 13, 20 | eleq2s 2849 | 1 β’ (πΉ β dom π β (πβπΉ) = (πΉβ((β―βπΉ) β 1))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 {crab 3430 β cdif 3944 β c0 4321 {csn 4627 β¨cop 4633 β¨cotp 4635 βͺ ciun 4996 β¦ cmpt 5230 I cid 5572 Γ cxp 5673 dom cdm 5675 ran crn 5676 βcfv 6542 (class class class)co 7411 β cmpo 7413 1oc1o 8461 2oc2o 8462 0cc0 11112 1c1 11113 β cmin 11448 ...cfz 13488 ..^cfzo 13631 β―chash 14294 Word cword 14468 splice csplice 14703 β¨βcs2 14796 ~FG cefg 19615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-hash 14295 df-word 14469 |
This theorem is referenced by: efgsdmi 19641 efgsval2 19642 efgsrel 19643 efgs1b 19645 efgsp1 19646 efgsfo 19648 efgredlema 19649 efgredlemd 19653 efgredlem 19656 efgredeu 19661 |
Copyright terms: Public domain | W3C validator |