| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matplusgcell | Structured version Visualization version GIF version | ||
| Description: Addition in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.) |
| Ref | Expression |
|---|---|
| matplusgcell.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matplusgcell.b | ⊢ 𝐵 = (Base‘𝐴) |
| matplusgcell.p | ⊢ ✚ = (+g‘𝐴) |
| matplusgcell.q | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| matplusgcell | ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matplusgcell.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | matplusgcell.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | matplusgcell.p | . . . . 5 ⊢ ✚ = (+g‘𝐴) | |
| 4 | matplusgcell.q | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 5 | 1, 2, 3, 4 | matplusg2 22314 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) |
| 6 | 5 | oveqd 7404 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐼(𝑋 ✚ 𝑌)𝐽) = (𝐼(𝑋 ∘f + 𝑌)𝐽)) |
| 7 | 6 | adantr 480 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = (𝐼(𝑋 ∘f + 𝑌)𝐽)) |
| 8 | df-ov 7390 | . . 3 ⊢ (𝐼(𝑋 ∘f + 𝑌)𝐽) = ((𝑋 ∘f + 𝑌)‘〈𝐼, 𝐽〉) | |
| 9 | 8 | a1i 11 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ∘f + 𝑌)𝐽) = ((𝑋 ∘f + 𝑌)‘〈𝐼, 𝐽〉)) |
| 10 | opelxp 5674 | . . 3 ⊢ (〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁) ↔ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) | |
| 11 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 12 | 1, 11, 2 | matbas2i 22309 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 13 | elmapfn 8838 | . . . . . 6 ⊢ (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋 Fn (𝑁 × 𝑁)) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 Fn (𝑁 × 𝑁)) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 Fn (𝑁 × 𝑁)) |
| 16 | 1, 11, 2 | matbas2i 22309 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 17 | elmapfn 8838 | . . . . . 6 ⊢ (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁)) | |
| 18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → 𝑌 Fn (𝑁 × 𝑁)) |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 Fn (𝑁 × 𝑁)) |
| 20 | 1, 2 | matrcl 22299 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 21 | xpfi 9269 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) | |
| 22 | 21 | anidms 566 | . . . . . . 7 ⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin) |
| 23 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 × 𝑁) ∈ Fin) |
| 24 | 20, 23 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (𝑁 × 𝑁) ∈ Fin) |
| 25 | 24 | adantr 480 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁 × 𝑁) ∈ Fin) |
| 26 | inidm 4190 | . . . 4 ⊢ ((𝑁 × 𝑁) ∩ (𝑁 × 𝑁)) = (𝑁 × 𝑁) | |
| 27 | df-ov 7390 | . . . . . 6 ⊢ (𝐼𝑋𝐽) = (𝑋‘〈𝐼, 𝐽〉) | |
| 28 | 27 | eqcomi 2738 | . . . . 5 ⊢ (𝑋‘〈𝐼, 𝐽〉) = (𝐼𝑋𝐽) |
| 29 | 28 | a1i 11 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → (𝑋‘〈𝐼, 𝐽〉) = (𝐼𝑋𝐽)) |
| 30 | df-ov 7390 | . . . . . 6 ⊢ (𝐼𝑌𝐽) = (𝑌‘〈𝐼, 𝐽〉) | |
| 31 | 30 | eqcomi 2738 | . . . . 5 ⊢ (𝑌‘〈𝐼, 𝐽〉) = (𝐼𝑌𝐽) |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → (𝑌‘〈𝐼, 𝐽〉) = (𝐼𝑌𝐽)) |
| 33 | 15, 19, 25, 25, 26, 29, 32 | ofval 7664 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → ((𝑋 ∘f + 𝑌)‘〈𝐼, 𝐽〉) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
| 34 | 10, 33 | sylan2br 595 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((𝑋 ∘f + 𝑌)‘〈𝐼, 𝐽〉) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
| 35 | 7, 9, 34 | 3eqtrd 2768 | 1 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 × cxp 5636 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 ↑m cmap 8799 Fincfn 8918 Basecbs 17179 +gcplusg 17220 Mat cmat 22294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-pws 17412 df-sra 21080 df-rgmod 21081 df-dsmm 21641 df-frlm 21656 df-mat 22295 |
| This theorem is referenced by: mat1ghm 22370 cpmatacl 22603 mat2pmatghm 22617 pm2mpghm 22703 |
| Copyright terms: Public domain | W3C validator |