MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matplusgcell Structured version   Visualization version   GIF version

Theorem matplusgcell 21302
Description: Addition in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.)
Hypotheses
Ref Expression
matplusgcell.a 𝐴 = (𝑁 Mat 𝑅)
matplusgcell.b 𝐵 = (Base‘𝐴)
matplusgcell.p = (+g𝐴)
matplusgcell.q + = (+g𝑅)
Assertion
Ref Expression
matplusgcell (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽)))

Proof of Theorem matplusgcell
StepHypRef Expression
1 matplusgcell.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 matplusgcell.b . . . . 5 𝐵 = (Base‘𝐴)
3 matplusgcell.p . . . . 5 = (+g𝐴)
4 matplusgcell.q . . . . 5 + = (+g𝑅)
51, 2, 3, 4matplusg2 21296 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋f + 𝑌))
65oveqd 7219 . . 3 ((𝑋𝐵𝑌𝐵) → (𝐼(𝑋 𝑌)𝐽) = (𝐼(𝑋f + 𝑌)𝐽))
76adantr 484 . 2 (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 𝑌)𝐽) = (𝐼(𝑋f + 𝑌)𝐽))
8 df-ov 7205 . . 3 (𝐼(𝑋f + 𝑌)𝐽) = ((𝑋f + 𝑌)‘⟨𝐼, 𝐽⟩)
98a1i 11 . 2 (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋f + 𝑌)𝐽) = ((𝑋f + 𝑌)‘⟨𝐼, 𝐽⟩))
10 opelxp 5576 . . 3 (⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁) ↔ (𝐼𝑁𝐽𝑁))
11 eqid 2734 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
121, 11, 2matbas2i 21291 . . . . . 6 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
13 elmapfn 8535 . . . . . 6 (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋 Fn (𝑁 × 𝑁))
1412, 13syl 17 . . . . 5 (𝑋𝐵𝑋 Fn (𝑁 × 𝑁))
1514adantr 484 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑋 Fn (𝑁 × 𝑁))
161, 11, 2matbas2i 21291 . . . . . 6 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
17 elmapfn 8535 . . . . . 6 (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁))
1816, 17syl 17 . . . . 5 (𝑌𝐵𝑌 Fn (𝑁 × 𝑁))
1918adantl 485 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑌 Fn (𝑁 × 𝑁))
201, 2matrcl 21281 . . . . . 6 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
21 xpfi 8931 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
2221anidms 570 . . . . . . 7 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin)
2322adantr 484 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 × 𝑁) ∈ Fin)
2420, 23syl 17 . . . . 5 (𝑋𝐵 → (𝑁 × 𝑁) ∈ Fin)
2524adantr 484 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑁 × 𝑁) ∈ Fin)
26 inidm 4123 . . . 4 ((𝑁 × 𝑁) ∩ (𝑁 × 𝑁)) = (𝑁 × 𝑁)
27 df-ov 7205 . . . . . 6 (𝐼𝑋𝐽) = (𝑋‘⟨𝐼, 𝐽⟩)
2827eqcomi 2743 . . . . 5 (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽)
2928a1i 11 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽))
30 df-ov 7205 . . . . . 6 (𝐼𝑌𝐽) = (𝑌‘⟨𝐼, 𝐽⟩)
3130eqcomi 2743 . . . . 5 (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽)
3231a1i 11 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽))
3315, 19, 25, 25, 26, 29, 32ofval 7468 . . 3 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → ((𝑋f + 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽)))
3410, 33sylan2br 598 . 2 (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋f + 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽)))
357, 9, 343eqtrd 2778 1 (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3401  cop 4537   × cxp 5538   Fn wfn 6364  cfv 6369  (class class class)co 7202  f cof 7456  m cmap 8497  Fincfn 8615  Basecbs 16684  +gcplusg 16767   Mat cmat 21276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-ot 4540  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-sup 9047  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-fz 13079  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-hom 16791  df-cco 16792  df-0g 16918  df-prds 16924  df-pws 16926  df-sra 20181  df-rgmod 20182  df-dsmm 20666  df-frlm 20681  df-mat 21277
This theorem is referenced by:  mat1ghm  21352  cpmatacl  21585  mat2pmatghm  21599  pm2mpghm  21685
  Copyright terms: Public domain W3C validator