![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matplusgcell | Structured version Visualization version GIF version |
Description: Addition in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.) |
Ref | Expression |
---|---|
matplusgcell.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matplusgcell.b | ⊢ 𝐵 = (Base‘𝐴) |
matplusgcell.p | ⊢ ✚ = (+g‘𝐴) |
matplusgcell.q | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
matplusgcell | ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matplusgcell.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | matplusgcell.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
3 | matplusgcell.p | . . . . 5 ⊢ ✚ = (+g‘𝐴) | |
4 | matplusgcell.q | . . . . 5 ⊢ + = (+g‘𝑅) | |
5 | 1, 2, 3, 4 | matplusg2 21928 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) |
6 | 5 | oveqd 7425 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐼(𝑋 ✚ 𝑌)𝐽) = (𝐼(𝑋 ∘f + 𝑌)𝐽)) |
7 | 6 | adantr 481 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = (𝐼(𝑋 ∘f + 𝑌)𝐽)) |
8 | df-ov 7411 | . . 3 ⊢ (𝐼(𝑋 ∘f + 𝑌)𝐽) = ((𝑋 ∘f + 𝑌)‘⟨𝐼, 𝐽⟩) | |
9 | 8 | a1i 11 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ∘f + 𝑌)𝐽) = ((𝑋 ∘f + 𝑌)‘⟨𝐼, 𝐽⟩)) |
10 | opelxp 5712 | . . 3 ⊢ (⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁) ↔ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) | |
11 | eqid 2732 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
12 | 1, 11, 2 | matbas2i 21923 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
13 | elmapfn 8858 | . . . . . 6 ⊢ (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋 Fn (𝑁 × 𝑁)) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 Fn (𝑁 × 𝑁)) |
15 | 14 | adantr 481 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 Fn (𝑁 × 𝑁)) |
16 | 1, 11, 2 | matbas2i 21923 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
17 | elmapfn 8858 | . . . . . 6 ⊢ (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁)) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → 𝑌 Fn (𝑁 × 𝑁)) |
19 | 18 | adantl 482 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 Fn (𝑁 × 𝑁)) |
20 | 1, 2 | matrcl 21911 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
21 | xpfi 9316 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) | |
22 | 21 | anidms 567 | . . . . . . 7 ⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin) |
23 | 22 | adantr 481 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 × 𝑁) ∈ Fin) |
24 | 20, 23 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (𝑁 × 𝑁) ∈ Fin) |
25 | 24 | adantr 481 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁 × 𝑁) ∈ Fin) |
26 | inidm 4218 | . . . 4 ⊢ ((𝑁 × 𝑁) ∩ (𝑁 × 𝑁)) = (𝑁 × 𝑁) | |
27 | df-ov 7411 | . . . . . 6 ⊢ (𝐼𝑋𝐽) = (𝑋‘⟨𝐼, 𝐽⟩) | |
28 | 27 | eqcomi 2741 | . . . . 5 ⊢ (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽) |
29 | 28 | a1i 11 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽)) |
30 | df-ov 7411 | . . . . . 6 ⊢ (𝐼𝑌𝐽) = (𝑌‘⟨𝐼, 𝐽⟩) | |
31 | 30 | eqcomi 2741 | . . . . 5 ⊢ (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽) |
32 | 31 | a1i 11 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽)) |
33 | 15, 19, 25, 25, 26, 29, 32 | ofval 7680 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → ((𝑋 ∘f + 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
34 | 10, 33 | sylan2br 595 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((𝑋 ∘f + 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
35 | 7, 9, 34 | 3eqtrd 2776 | 1 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cop 4634 × cxp 5674 Fn wfn 6538 ‘cfv 6543 (class class class)co 7408 ∘f cof 7667 ↑m cmap 8819 Fincfn 8938 Basecbs 17143 +gcplusg 17196 Mat cmat 21906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17386 df-prds 17392 df-pws 17394 df-sra 20784 df-rgmod 20785 df-dsmm 21286 df-frlm 21301 df-mat 21907 |
This theorem is referenced by: mat1ghm 21984 cpmatacl 22217 mat2pmatghm 22231 pm2mpghm 22317 |
Copyright terms: Public domain | W3C validator |