MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matplusgcell Structured version   Visualization version   GIF version

Theorem matplusgcell 22423
Description: Addition in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.)
Hypotheses
Ref Expression
matplusgcell.a 𝐴 = (𝑁 Mat 𝑅)
matplusgcell.b 𝐵 = (Base‘𝐴)
matplusgcell.p = (+g𝐴)
matplusgcell.q + = (+g𝑅)
Assertion
Ref Expression
matplusgcell (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽)))

Proof of Theorem matplusgcell
StepHypRef Expression
1 matplusgcell.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 matplusgcell.b . . . . 5 𝐵 = (Base‘𝐴)
3 matplusgcell.p . . . . 5 = (+g𝐴)
4 matplusgcell.q . . . . 5 + = (+g𝑅)
51, 2, 3, 4matplusg2 22417 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋f + 𝑌))
65oveqd 7433 . . 3 ((𝑋𝐵𝑌𝐵) → (𝐼(𝑋 𝑌)𝐽) = (𝐼(𝑋f + 𝑌)𝐽))
76adantr 479 . 2 (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 𝑌)𝐽) = (𝐼(𝑋f + 𝑌)𝐽))
8 df-ov 7419 . . 3 (𝐼(𝑋f + 𝑌)𝐽) = ((𝑋f + 𝑌)‘⟨𝐼, 𝐽⟩)
98a1i 11 . 2 (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋f + 𝑌)𝐽) = ((𝑋f + 𝑌)‘⟨𝐼, 𝐽⟩))
10 opelxp 5710 . . 3 (⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁) ↔ (𝐼𝑁𝐽𝑁))
11 eqid 2726 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
121, 11, 2matbas2i 22412 . . . . . 6 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
13 elmapfn 8886 . . . . . 6 (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋 Fn (𝑁 × 𝑁))
1412, 13syl 17 . . . . 5 (𝑋𝐵𝑋 Fn (𝑁 × 𝑁))
1514adantr 479 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑋 Fn (𝑁 × 𝑁))
161, 11, 2matbas2i 22412 . . . . . 6 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
17 elmapfn 8886 . . . . . 6 (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁))
1816, 17syl 17 . . . . 5 (𝑌𝐵𝑌 Fn (𝑁 × 𝑁))
1918adantl 480 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑌 Fn (𝑁 × 𝑁))
201, 2matrcl 22400 . . . . . 6 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
21 xpfi 9353 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
2221anidms 565 . . . . . . 7 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin)
2322adantr 479 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 × 𝑁) ∈ Fin)
2420, 23syl 17 . . . . 5 (𝑋𝐵 → (𝑁 × 𝑁) ∈ Fin)
2524adantr 479 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑁 × 𝑁) ∈ Fin)
26 inidm 4217 . . . 4 ((𝑁 × 𝑁) ∩ (𝑁 × 𝑁)) = (𝑁 × 𝑁)
27 df-ov 7419 . . . . . 6 (𝐼𝑋𝐽) = (𝑋‘⟨𝐼, 𝐽⟩)
2827eqcomi 2735 . . . . 5 (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽)
2928a1i 11 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽))
30 df-ov 7419 . . . . . 6 (𝐼𝑌𝐽) = (𝑌‘⟨𝐼, 𝐽⟩)
3130eqcomi 2735 . . . . 5 (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽)
3231a1i 11 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽))
3315, 19, 25, 25, 26, 29, 32ofval 7693 . . 3 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → ((𝑋f + 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽)))
3410, 33sylan2br 593 . 2 (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋f + 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽)))
357, 9, 343eqtrd 2770 1 (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  cop 4629   × cxp 5672   Fn wfn 6541  cfv 6546  (class class class)co 7416  f cof 7680  m cmap 8847  Fincfn 8966  Basecbs 17208  +gcplusg 17261   Mat cmat 22395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-map 8849  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-sup 9478  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-fz 13533  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-hom 17285  df-cco 17286  df-0g 17451  df-prds 17457  df-pws 17459  df-sra 21147  df-rgmod 21148  df-dsmm 21726  df-frlm 21741  df-mat 22396
This theorem is referenced by:  mat1ghm  22473  cpmatacl  22706  mat2pmatghm  22720  pm2mpghm  22806
  Copyright terms: Public domain W3C validator