![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matplusgcell | Structured version Visualization version GIF version |
Description: Addition in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.) |
Ref | Expression |
---|---|
matplusgcell.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matplusgcell.b | ⊢ 𝐵 = (Base‘𝐴) |
matplusgcell.p | ⊢ ✚ = (+g‘𝐴) |
matplusgcell.q | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
matplusgcell | ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matplusgcell.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | matplusgcell.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
3 | matplusgcell.p | . . . . 5 ⊢ ✚ = (+g‘𝐴) | |
4 | matplusgcell.q | . . . . 5 ⊢ + = (+g‘𝑅) | |
5 | 1, 2, 3, 4 | matplusg2 22417 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) |
6 | 5 | oveqd 7433 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐼(𝑋 ✚ 𝑌)𝐽) = (𝐼(𝑋 ∘f + 𝑌)𝐽)) |
7 | 6 | adantr 479 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = (𝐼(𝑋 ∘f + 𝑌)𝐽)) |
8 | df-ov 7419 | . . 3 ⊢ (𝐼(𝑋 ∘f + 𝑌)𝐽) = ((𝑋 ∘f + 𝑌)‘〈𝐼, 𝐽〉) | |
9 | 8 | a1i 11 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ∘f + 𝑌)𝐽) = ((𝑋 ∘f + 𝑌)‘〈𝐼, 𝐽〉)) |
10 | opelxp 5710 | . . 3 ⊢ (〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁) ↔ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) | |
11 | eqid 2726 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
12 | 1, 11, 2 | matbas2i 22412 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
13 | elmapfn 8886 | . . . . . 6 ⊢ (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋 Fn (𝑁 × 𝑁)) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 Fn (𝑁 × 𝑁)) |
15 | 14 | adantr 479 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 Fn (𝑁 × 𝑁)) |
16 | 1, 11, 2 | matbas2i 22412 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
17 | elmapfn 8886 | . . . . . 6 ⊢ (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁)) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → 𝑌 Fn (𝑁 × 𝑁)) |
19 | 18 | adantl 480 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 Fn (𝑁 × 𝑁)) |
20 | 1, 2 | matrcl 22400 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
21 | xpfi 9353 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) | |
22 | 21 | anidms 565 | . . . . . . 7 ⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin) |
23 | 22 | adantr 479 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 × 𝑁) ∈ Fin) |
24 | 20, 23 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (𝑁 × 𝑁) ∈ Fin) |
25 | 24 | adantr 479 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁 × 𝑁) ∈ Fin) |
26 | inidm 4217 | . . . 4 ⊢ ((𝑁 × 𝑁) ∩ (𝑁 × 𝑁)) = (𝑁 × 𝑁) | |
27 | df-ov 7419 | . . . . . 6 ⊢ (𝐼𝑋𝐽) = (𝑋‘〈𝐼, 𝐽〉) | |
28 | 27 | eqcomi 2735 | . . . . 5 ⊢ (𝑋‘〈𝐼, 𝐽〉) = (𝐼𝑋𝐽) |
29 | 28 | a1i 11 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → (𝑋‘〈𝐼, 𝐽〉) = (𝐼𝑋𝐽)) |
30 | df-ov 7419 | . . . . . 6 ⊢ (𝐼𝑌𝐽) = (𝑌‘〈𝐼, 𝐽〉) | |
31 | 30 | eqcomi 2735 | . . . . 5 ⊢ (𝑌‘〈𝐼, 𝐽〉) = (𝐼𝑌𝐽) |
32 | 31 | a1i 11 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → (𝑌‘〈𝐼, 𝐽〉) = (𝐼𝑌𝐽)) |
33 | 15, 19, 25, 25, 26, 29, 32 | ofval 7693 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → ((𝑋 ∘f + 𝑌)‘〈𝐼, 𝐽〉) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
34 | 10, 33 | sylan2br 593 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((𝑋 ∘f + 𝑌)‘〈𝐼, 𝐽〉) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
35 | 7, 9, 34 | 3eqtrd 2770 | 1 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 〈cop 4629 × cxp 5672 Fn wfn 6541 ‘cfv 6546 (class class class)co 7416 ∘f cof 7680 ↑m cmap 8847 Fincfn 8966 Basecbs 17208 +gcplusg 17261 Mat cmat 22395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-ot 4632 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-map 8849 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9399 df-sup 9478 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-dec 12724 df-uz 12869 df-fz 13533 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-sca 17277 df-vsca 17278 df-ip 17279 df-tset 17280 df-ple 17281 df-ds 17283 df-hom 17285 df-cco 17286 df-0g 17451 df-prds 17457 df-pws 17459 df-sra 21147 df-rgmod 21148 df-dsmm 21726 df-frlm 21741 df-mat 22396 |
This theorem is referenced by: mat1ghm 22473 cpmatacl 22706 mat2pmatghm 22720 pm2mpghm 22806 |
Copyright terms: Public domain | W3C validator |