| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matplusgcell | Structured version Visualization version GIF version | ||
| Description: Addition in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.) |
| Ref | Expression |
|---|---|
| matplusgcell.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matplusgcell.b | ⊢ 𝐵 = (Base‘𝐴) |
| matplusgcell.p | ⊢ ✚ = (+g‘𝐴) |
| matplusgcell.q | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| matplusgcell | ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matplusgcell.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | matplusgcell.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | matplusgcell.p | . . . . 5 ⊢ ✚ = (+g‘𝐴) | |
| 4 | matplusgcell.q | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 5 | 1, 2, 3, 4 | matplusg2 22330 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) |
| 6 | 5 | oveqd 7370 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐼(𝑋 ✚ 𝑌)𝐽) = (𝐼(𝑋 ∘f + 𝑌)𝐽)) |
| 7 | 6 | adantr 480 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = (𝐼(𝑋 ∘f + 𝑌)𝐽)) |
| 8 | df-ov 7356 | . . 3 ⊢ (𝐼(𝑋 ∘f + 𝑌)𝐽) = ((𝑋 ∘f + 𝑌)‘〈𝐼, 𝐽〉) | |
| 9 | 8 | a1i 11 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ∘f + 𝑌)𝐽) = ((𝑋 ∘f + 𝑌)‘〈𝐼, 𝐽〉)) |
| 10 | opelxp 5659 | . . 3 ⊢ (〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁) ↔ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) | |
| 11 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 12 | 1, 11, 2 | matbas2i 22325 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 13 | elmapfn 8799 | . . . . . 6 ⊢ (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋 Fn (𝑁 × 𝑁)) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 Fn (𝑁 × 𝑁)) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 Fn (𝑁 × 𝑁)) |
| 16 | 1, 11, 2 | matbas2i 22325 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 17 | elmapfn 8799 | . . . . . 6 ⊢ (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁)) | |
| 18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → 𝑌 Fn (𝑁 × 𝑁)) |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 Fn (𝑁 × 𝑁)) |
| 20 | 1, 2 | matrcl 22315 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 21 | xpfi 9227 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) | |
| 22 | 21 | anidms 566 | . . . . . . 7 ⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin) |
| 23 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 × 𝑁) ∈ Fin) |
| 24 | 20, 23 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (𝑁 × 𝑁) ∈ Fin) |
| 25 | 24 | adantr 480 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁 × 𝑁) ∈ Fin) |
| 26 | inidm 4180 | . . . 4 ⊢ ((𝑁 × 𝑁) ∩ (𝑁 × 𝑁)) = (𝑁 × 𝑁) | |
| 27 | df-ov 7356 | . . . . . 6 ⊢ (𝐼𝑋𝐽) = (𝑋‘〈𝐼, 𝐽〉) | |
| 28 | 27 | eqcomi 2738 | . . . . 5 ⊢ (𝑋‘〈𝐼, 𝐽〉) = (𝐼𝑋𝐽) |
| 29 | 28 | a1i 11 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → (𝑋‘〈𝐼, 𝐽〉) = (𝐼𝑋𝐽)) |
| 30 | df-ov 7356 | . . . . . 6 ⊢ (𝐼𝑌𝐽) = (𝑌‘〈𝐼, 𝐽〉) | |
| 31 | 30 | eqcomi 2738 | . . . . 5 ⊢ (𝑌‘〈𝐼, 𝐽〉) = (𝐼𝑌𝐽) |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → (𝑌‘〈𝐼, 𝐽〉) = (𝐼𝑌𝐽)) |
| 33 | 15, 19, 25, 25, 26, 29, 32 | ofval 7628 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → ((𝑋 ∘f + 𝑌)‘〈𝐼, 𝐽〉) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
| 34 | 10, 33 | sylan2br 595 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((𝑋 ∘f + 𝑌)‘〈𝐼, 𝐽〉) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
| 35 | 7, 9, 34 | 3eqtrd 2768 | 1 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 〈cop 4585 × cxp 5621 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 ↑m cmap 8760 Fincfn 8879 Basecbs 17138 +gcplusg 17179 Mat cmat 22310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-prds 17369 df-pws 17371 df-sra 21095 df-rgmod 21096 df-dsmm 21657 df-frlm 21672 df-mat 22311 |
| This theorem is referenced by: mat1ghm 22386 cpmatacl 22619 mat2pmatghm 22633 pm2mpghm 22719 |
| Copyright terms: Public domain | W3C validator |