MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqmat Structured version   Visualization version   GIF version

Theorem eqmat 22362
Description: Two square matrices of the same dimension are equal if they have the same entries. (Contributed by AV, 25-Sep-2019.)
Hypotheses
Ref Expression
eqmat.a 𝐴 = (𝑁 Mat 𝑅)
eqmat.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
eqmat ((𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑋𝑗) = (𝑖𝑌𝑗)))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑖,𝑋,𝑗   𝑖,𝑌,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑅(𝑖,𝑗)

Proof of Theorem eqmat
StepHypRef Expression
1 eqmat.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2735 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 eqmat.b . . . 4 𝐵 = (Base‘𝐴)
41, 2, 3matbas2i 22360 . . 3 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
5 elmapfn 8879 . . 3 (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋 Fn (𝑁 × 𝑁))
64, 5syl 17 . 2 (𝑋𝐵𝑋 Fn (𝑁 × 𝑁))
71, 2, 3matbas2i 22360 . . 3 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
8 elmapfn 8879 . . 3 (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁))
97, 8syl 17 . 2 (𝑌𝐵𝑌 Fn (𝑁 × 𝑁))
10 eqfnov2 7537 . 2 ((𝑋 Fn (𝑁 × 𝑁) ∧ 𝑌 Fn (𝑁 × 𝑁)) → (𝑋 = 𝑌 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑋𝑗) = (𝑖𝑌𝑗)))
116, 9, 10syl2an 596 1 ((𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑋𝑗) = (𝑖𝑌𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051   × cxp 5652   Fn wfn 6526  cfv 6531  (class class class)co 7405  m cmap 8840  Basecbs 17228   Mat cmat 22345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-prds 17461  df-pws 17463  df-sra 21131  df-rgmod 21132  df-dsmm 21692  df-frlm 21707  df-mat 22346
This theorem is referenced by:  mat1ghm  22421  mat1mhm  22422  scmatscmiddistr  22446  scmatmats  22449  scmatscm  22451  scmatf1  22469  mat2pmatf1  22667  mat2pmat1  22670  mat2pmatlin  22673  m2cpminvid  22691  m2cpminvid2  22693  decpmataa0  22706  decpmatmul  22710  pmatcollpw1  22714  monmatcollpw  22717  pmatcollpw  22719  pmatcollpwscmatlem2  22728  pm2mpf1  22737  mp2pm2mplem4  22747  submateq  33840  madjusmdetlem3  33860
  Copyright terms: Public domain W3C validator