Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqmat | Structured version Visualization version GIF version |
Description: Two square matrices of the same dimension are equal if they have the same entries. (Contributed by AV, 25-Sep-2019.) |
Ref | Expression |
---|---|
eqmat.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
eqmat.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
eqmat | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑋𝑗) = (𝑖𝑌𝑗))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqmat.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | eqid 2733 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqmat.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
4 | 1, 2, 3 | matbas2i 21599 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
5 | elmapfn 8673 | . . 3 ⊢ (𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑋 Fn (𝑁 × 𝑁)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝑋 ∈ 𝐵 → 𝑋 Fn (𝑁 × 𝑁)) |
7 | 1, 2, 3 | matbas2i 21599 | . . 3 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
8 | elmapfn 8673 | . . 3 ⊢ (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁)) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝑌 ∈ 𝐵 → 𝑌 Fn (𝑁 × 𝑁)) |
10 | eqfnov2 7424 | . 2 ⊢ ((𝑋 Fn (𝑁 × 𝑁) ∧ 𝑌 Fn (𝑁 × 𝑁)) → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑋𝑗) = (𝑖𝑌𝑗))) | |
11 | 6, 9, 10 | syl2an 595 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑋𝑗) = (𝑖𝑌𝑗))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ∀wral 3059 × cxp 5589 Fn wfn 6442 ‘cfv 6447 (class class class)co 7295 ↑m cmap 8635 Basecbs 16940 Mat cmat 21582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-ot 4573 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-supp 7998 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-map 8637 df-ixp 8706 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-fsupp 9157 df-sup 9229 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-z 12348 df-dec 12466 df-uz 12611 df-fz 13268 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-mulr 17004 df-sca 17006 df-vsca 17007 df-ip 17008 df-tset 17009 df-ple 17010 df-ds 17012 df-hom 17014 df-cco 17015 df-0g 17180 df-prds 17186 df-pws 17188 df-sra 20462 df-rgmod 20463 df-dsmm 20967 df-frlm 20982 df-mat 21583 |
This theorem is referenced by: mat1ghm 21660 mat1mhm 21661 scmatscmiddistr 21685 scmatmats 21688 scmatscm 21690 scmatf1 21708 mat2pmatf1 21906 mat2pmat1 21909 mat2pmatlin 21912 m2cpminvid 21930 m2cpminvid2 21932 decpmataa0 21945 decpmatmul 21949 pmatcollpw1 21953 monmatcollpw 21956 pmatcollpw 21958 pmatcollpwscmatlem2 21967 pm2mpf1 21976 mp2pm2mplem4 21986 submateq 31787 madjusmdetlem3 31807 |
Copyright terms: Public domain | W3C validator |