| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0bits | Structured version Visualization version GIF version | ||
| Description: The bits of zero. (Contributed by Mario Carneiro, 6-Sep-2016.) |
| Ref | Expression |
|---|---|
| 0bits | ⊢ (bits‘0) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11098 | . . . . . . 7 ⊢ 0 ∈ V | |
| 2 | 1 | snid 4613 | . . . . . 6 ⊢ 0 ∈ {0} |
| 3 | fzo01 13639 | . . . . . 6 ⊢ (0..^1) = {0} | |
| 4 | 2, 3 | eleqtrri 2828 | . . . . 5 ⊢ 0 ∈ (0..^1) |
| 5 | 2cn 12192 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 6 | exp0 13964 | . . . . . . 7 ⊢ (2 ∈ ℂ → (2↑0) = 1) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . 6 ⊢ (2↑0) = 1 |
| 8 | 7 | oveq2i 7352 | . . . . 5 ⊢ (0..^(2↑0)) = (0..^1) |
| 9 | 4, 8 | eleqtrri 2828 | . . . 4 ⊢ 0 ∈ (0..^(2↑0)) |
| 10 | 0z 12471 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 11 | 0nn0 12388 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 12 | bitsfzo 16338 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 0 ∈ ℕ0) → (0 ∈ (0..^(2↑0)) ↔ (bits‘0) ⊆ (0..^0))) | |
| 13 | 10, 11, 12 | mp2an 692 | . . . 4 ⊢ (0 ∈ (0..^(2↑0)) ↔ (bits‘0) ⊆ (0..^0)) |
| 14 | 9, 13 | mpbi 230 | . . 3 ⊢ (bits‘0) ⊆ (0..^0) |
| 15 | fzo0 13575 | . . 3 ⊢ (0..^0) = ∅ | |
| 16 | 14, 15 | sseqtri 3981 | . 2 ⊢ (bits‘0) ⊆ ∅ |
| 17 | 0ss 4348 | . 2 ⊢ ∅ ⊆ (bits‘0) | |
| 18 | 16, 17 | eqssi 3949 | 1 ⊢ (bits‘0) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 ∅c0 4281 {csn 4574 ‘cfv 6477 (class class class)co 7341 ℂcc 10996 0cc0 10998 1c1 10999 2c2 12172 ℕ0cn0 12373 ℤcz 12460 ..^cfzo 13546 ↑cexp 13960 bitscbits 16322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-fz 13400 df-fzo 13547 df-fl 13688 df-seq 13901 df-exp 13961 df-dvds 16156 df-bits 16325 |
| This theorem is referenced by: m1bits 16343 sadcadd 16361 sadadd2 16363 bitsres 16376 smumullem 16395 eulerpartgbij 34375 eulerpartlemmf 34378 eulerpartlemgvv 34379 eulerpartlemgh 34381 |
| Copyright terms: Public domain | W3C validator |