| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0bits | Structured version Visualization version GIF version | ||
| Description: The bits of zero. (Contributed by Mario Carneiro, 6-Sep-2016.) |
| Ref | Expression |
|---|---|
| 0bits | ⊢ (bits‘0) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11168 | . . . . . . 7 ⊢ 0 ∈ V | |
| 2 | 1 | snid 4626 | . . . . . 6 ⊢ 0 ∈ {0} |
| 3 | fzo01 13708 | . . . . . 6 ⊢ (0..^1) = {0} | |
| 4 | 2, 3 | eleqtrri 2827 | . . . . 5 ⊢ 0 ∈ (0..^1) |
| 5 | 2cn 12261 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 6 | exp0 14030 | . . . . . . 7 ⊢ (2 ∈ ℂ → (2↑0) = 1) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . 6 ⊢ (2↑0) = 1 |
| 8 | 7 | oveq2i 7398 | . . . . 5 ⊢ (0..^(2↑0)) = (0..^1) |
| 9 | 4, 8 | eleqtrri 2827 | . . . 4 ⊢ 0 ∈ (0..^(2↑0)) |
| 10 | 0z 12540 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 11 | 0nn0 12457 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 12 | bitsfzo 16405 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 0 ∈ ℕ0) → (0 ∈ (0..^(2↑0)) ↔ (bits‘0) ⊆ (0..^0))) | |
| 13 | 10, 11, 12 | mp2an 692 | . . . 4 ⊢ (0 ∈ (0..^(2↑0)) ↔ (bits‘0) ⊆ (0..^0)) |
| 14 | 9, 13 | mpbi 230 | . . 3 ⊢ (bits‘0) ⊆ (0..^0) |
| 15 | fzo0 13644 | . . 3 ⊢ (0..^0) = ∅ | |
| 16 | 14, 15 | sseqtri 3995 | . 2 ⊢ (bits‘0) ⊆ ∅ |
| 17 | 0ss 4363 | . 2 ⊢ ∅ ⊆ (bits‘0) | |
| 18 | 16, 17 | eqssi 3963 | 1 ⊢ (bits‘0) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∅c0 4296 {csn 4589 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 2c2 12241 ℕ0cn0 12442 ℤcz 12529 ..^cfzo 13615 ↑cexp 14026 bitscbits 16389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-dvds 16223 df-bits 16392 |
| This theorem is referenced by: m1bits 16410 sadcadd 16428 sadadd2 16430 bitsres 16443 smumullem 16462 eulerpartgbij 34363 eulerpartlemmf 34366 eulerpartlemgvv 34367 eulerpartlemgh 34369 |
| Copyright terms: Public domain | W3C validator |