Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc2fv1 Structured version   Visualization version   GIF version

Theorem cyc2fv1 33114
Description: Function value of a 2-cycle at the first point. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cycpm2.c 𝐶 = (toCyc‘𝐷)
cycpm2.d (𝜑𝐷𝑉)
cycpm2.i (𝜑𝐼𝐷)
cycpm2.j (𝜑𝐽𝐷)
cycpm2.1 (𝜑𝐼𝐽)
cycpm2cl.s 𝑆 = (SymGrp‘𝐷)
Assertion
Ref Expression
cyc2fv1 (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐼) = 𝐽)

Proof of Theorem cyc2fv1
StepHypRef Expression
1 cycpm2.c . . 3 𝐶 = (toCyc‘𝐷)
2 cycpm2.d . . 3 (𝜑𝐷𝑉)
3 cycpm2.i . . . 4 (𝜑𝐼𝐷)
4 cycpm2.j . . . 4 (𝜑𝐽𝐷)
53, 4s2cld 14920 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩ ∈ Word 𝐷)
6 cycpm2.1 . . . 4 (𝜑𝐼𝐽)
73, 4, 6s2f1 32911 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)
8 c0ex 11284 . . . . . 6 0 ∈ V
98snid 4684 . . . . 5 0 ∈ {0}
10 s2len 14938 . . . . . . . . 9 (♯‘⟨“𝐼𝐽”⟩) = 2
1110oveq1i 7458 . . . . . . . 8 ((♯‘⟨“𝐼𝐽”⟩) − 1) = (2 − 1)
12 2m1e1 12419 . . . . . . . 8 (2 − 1) = 1
1311, 12eqtr2i 2769 . . . . . . 7 1 = ((♯‘⟨“𝐼𝐽”⟩) − 1)
1413oveq2i 7459 . . . . . 6 (0..^1) = (0..^((♯‘⟨“𝐼𝐽”⟩) − 1))
15 fzo01 13798 . . . . . 6 (0..^1) = {0}
1614, 15eqtr3i 2770 . . . . 5 (0..^((♯‘⟨“𝐼𝐽”⟩) − 1)) = {0}
179, 16eleqtrri 2843 . . . 4 0 ∈ (0..^((♯‘⟨“𝐼𝐽”⟩) − 1))
1817a1i 11 . . 3 (𝜑 → 0 ∈ (0..^((♯‘⟨“𝐼𝐽”⟩) − 1)))
191, 2, 5, 7, 18cycpmfv1 33106 . 2 (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘(⟨“𝐼𝐽”⟩‘0)) = (⟨“𝐼𝐽”⟩‘(0 + 1)))
20 s2fv0 14936 . . . 4 (𝐼𝐷 → (⟨“𝐼𝐽”⟩‘0) = 𝐼)
213, 20syl 17 . . 3 (𝜑 → (⟨“𝐼𝐽”⟩‘0) = 𝐼)
2221fveq2d 6924 . 2 (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘(⟨“𝐼𝐽”⟩‘0)) = ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐼))
23 0p1e1 12415 . . . 4 (0 + 1) = 1
2423fveq2i 6923 . . 3 (⟨“𝐼𝐽”⟩‘(0 + 1)) = (⟨“𝐼𝐽”⟩‘1)
25 s2fv1 14937 . . . 4 (𝐽𝐷 → (⟨“𝐼𝐽”⟩‘1) = 𝐽)
264, 25syl 17 . . 3 (𝜑 → (⟨“𝐼𝐽”⟩‘1) = 𝐽)
2724, 26eqtrid 2792 . 2 (𝜑 → (⟨“𝐼𝐽”⟩‘(0 + 1)) = 𝐽)
2819, 22, 273eqtr3d 2788 1 (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐼) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  {csn 4648  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  cmin 11520  2c2 12348  ..^cfzo 13711  chash 14379  ⟨“cs2 14890  SymGrpcsymg 19410  toCycctocyc 33099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-csh 14837  df-s2 14897  df-tocyc 33100
This theorem is referenced by:  cycpmco2lem1  33119  cyc3co2  33133
  Copyright terms: Public domain W3C validator