![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cyc2fv1 | Structured version Visualization version GIF version |
Description: Function value of a 2-cycle at the first point. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
Ref | Expression |
---|---|
cycpm2.c | β’ πΆ = (toCycβπ·) |
cycpm2.d | β’ (π β π· β π) |
cycpm2.i | β’ (π β πΌ β π·) |
cycpm2.j | β’ (π β π½ β π·) |
cycpm2.1 | β’ (π β πΌ β π½) |
cycpm2cl.s | β’ π = (SymGrpβπ·) |
Ref | Expression |
---|---|
cyc2fv1 | β’ (π β ((πΆββ¨βπΌπ½ββ©)βπΌ) = π½) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycpm2.c | . . 3 β’ πΆ = (toCycβπ·) | |
2 | cycpm2.d | . . 3 β’ (π β π· β π) | |
3 | cycpm2.i | . . . 4 β’ (π β πΌ β π·) | |
4 | cycpm2.j | . . . 4 β’ (π β π½ β π·) | |
5 | 3, 4 | s2cld 14818 | . . 3 β’ (π β β¨βπΌπ½ββ© β Word π·) |
6 | cycpm2.1 | . . . 4 β’ (π β πΌ β π½) | |
7 | 3, 4, 6 | s2f1 32098 | . . 3 β’ (π β β¨βπΌπ½ββ©:dom β¨βπΌπ½ββ©β1-1βπ·) |
8 | c0ex 11204 | . . . . . 6 β’ 0 β V | |
9 | 8 | snid 4663 | . . . . 5 β’ 0 β {0} |
10 | s2len 14836 | . . . . . . . . 9 β’ (β―ββ¨βπΌπ½ββ©) = 2 | |
11 | 10 | oveq1i 7415 | . . . . . . . 8 β’ ((β―ββ¨βπΌπ½ββ©) β 1) = (2 β 1) |
12 | 2m1e1 12334 | . . . . . . . 8 β’ (2 β 1) = 1 | |
13 | 11, 12 | eqtr2i 2761 | . . . . . . 7 β’ 1 = ((β―ββ¨βπΌπ½ββ©) β 1) |
14 | 13 | oveq2i 7416 | . . . . . 6 β’ (0..^1) = (0..^((β―ββ¨βπΌπ½ββ©) β 1)) |
15 | fzo01 13710 | . . . . . 6 β’ (0..^1) = {0} | |
16 | 14, 15 | eqtr3i 2762 | . . . . 5 β’ (0..^((β―ββ¨βπΌπ½ββ©) β 1)) = {0} |
17 | 9, 16 | eleqtrri 2832 | . . . 4 β’ 0 β (0..^((β―ββ¨βπΌπ½ββ©) β 1)) |
18 | 17 | a1i 11 | . . 3 β’ (π β 0 β (0..^((β―ββ¨βπΌπ½ββ©) β 1))) |
19 | 1, 2, 5, 7, 18 | cycpmfv1 32259 | . 2 β’ (π β ((πΆββ¨βπΌπ½ββ©)β(β¨βπΌπ½ββ©β0)) = (β¨βπΌπ½ββ©β(0 + 1))) |
20 | s2fv0 14834 | . . . 4 β’ (πΌ β π· β (β¨βπΌπ½ββ©β0) = πΌ) | |
21 | 3, 20 | syl 17 | . . 3 β’ (π β (β¨βπΌπ½ββ©β0) = πΌ) |
22 | 21 | fveq2d 6892 | . 2 β’ (π β ((πΆββ¨βπΌπ½ββ©)β(β¨βπΌπ½ββ©β0)) = ((πΆββ¨βπΌπ½ββ©)βπΌ)) |
23 | 0p1e1 12330 | . . . 4 β’ (0 + 1) = 1 | |
24 | 23 | fveq2i 6891 | . . 3 β’ (β¨βπΌπ½ββ©β(0 + 1)) = (β¨βπΌπ½ββ©β1) |
25 | s2fv1 14835 | . . . 4 β’ (π½ β π· β (β¨βπΌπ½ββ©β1) = π½) | |
26 | 4, 25 | syl 17 | . . 3 β’ (π β (β¨βπΌπ½ββ©β1) = π½) |
27 | 24, 26 | eqtrid 2784 | . 2 β’ (π β (β¨βπΌπ½ββ©β(0 + 1)) = π½) |
28 | 19, 22, 27 | 3eqtr3d 2780 | 1 β’ (π β ((πΆββ¨βπΌπ½ββ©)βπΌ) = π½) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wne 2940 {csn 4627 βcfv 6540 (class class class)co 7405 0cc0 11106 1c1 11107 + caddc 11109 β cmin 11440 2c2 12263 ..^cfzo 13623 β―chash 14286 β¨βcs2 14788 SymGrpcsymg 19228 toCycctocyc 32252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-hash 14287 df-word 14461 df-concat 14517 df-s1 14542 df-substr 14587 df-pfx 14617 df-csh 14735 df-s2 14795 df-tocyc 32253 |
This theorem is referenced by: cycpmco2lem1 32272 cyc3co2 32286 |
Copyright terms: Public domain | W3C validator |