Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cyc2fv1 | Structured version Visualization version GIF version |
Description: Function value of a 2-cycle at the first point. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
Ref | Expression |
---|---|
cycpm2.c | ⊢ 𝐶 = (toCyc‘𝐷) |
cycpm2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
cycpm2.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
cycpm2.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
cycpm2.1 | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
cycpm2cl.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
Ref | Expression |
---|---|
cyc2fv1 | ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘𝐼) = 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycpm2.c | . . 3 ⊢ 𝐶 = (toCyc‘𝐷) | |
2 | cycpm2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
3 | cycpm2.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
4 | cycpm2.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
5 | 3, 4 | s2cld 14512 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽”〉 ∈ Word 𝐷) |
6 | cycpm2.1 | . . . 4 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
7 | 3, 4, 6 | s2f1 31121 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
8 | c0ex 10900 | . . . . . 6 ⊢ 0 ∈ V | |
9 | 8 | snid 4594 | . . . . 5 ⊢ 0 ∈ {0} |
10 | s2len 14530 | . . . . . . . . 9 ⊢ (♯‘〈“𝐼𝐽”〉) = 2 | |
11 | 10 | oveq1i 7265 | . . . . . . . 8 ⊢ ((♯‘〈“𝐼𝐽”〉) − 1) = (2 − 1) |
12 | 2m1e1 12029 | . . . . . . . 8 ⊢ (2 − 1) = 1 | |
13 | 11, 12 | eqtr2i 2767 | . . . . . . 7 ⊢ 1 = ((♯‘〈“𝐼𝐽”〉) − 1) |
14 | 13 | oveq2i 7266 | . . . . . 6 ⊢ (0..^1) = (0..^((♯‘〈“𝐼𝐽”〉) − 1)) |
15 | fzo01 13397 | . . . . . 6 ⊢ (0..^1) = {0} | |
16 | 14, 15 | eqtr3i 2768 | . . . . 5 ⊢ (0..^((♯‘〈“𝐼𝐽”〉) − 1)) = {0} |
17 | 9, 16 | eleqtrri 2838 | . . . 4 ⊢ 0 ∈ (0..^((♯‘〈“𝐼𝐽”〉) − 1)) |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ (0..^((♯‘〈“𝐼𝐽”〉) − 1))) |
19 | 1, 2, 5, 7, 18 | cycpmfv1 31282 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘(〈“𝐼𝐽”〉‘0)) = (〈“𝐼𝐽”〉‘(0 + 1))) |
20 | s2fv0 14528 | . . . 4 ⊢ (𝐼 ∈ 𝐷 → (〈“𝐼𝐽”〉‘0) = 𝐼) | |
21 | 3, 20 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘0) = 𝐼) |
22 | 21 | fveq2d 6760 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘(〈“𝐼𝐽”〉‘0)) = ((𝐶‘〈“𝐼𝐽”〉)‘𝐼)) |
23 | 0p1e1 12025 | . . . 4 ⊢ (0 + 1) = 1 | |
24 | 23 | fveq2i 6759 | . . 3 ⊢ (〈“𝐼𝐽”〉‘(0 + 1)) = (〈“𝐼𝐽”〉‘1) |
25 | s2fv1 14529 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽”〉‘1) = 𝐽) | |
26 | 4, 25 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘1) = 𝐽) |
27 | 24, 26 | syl5eq 2791 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘(0 + 1)) = 𝐽) |
28 | 19, 22, 27 | 3eqtr3d 2786 | 1 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘𝐼) = 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {csn 4558 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 − cmin 11135 2c2 11958 ..^cfzo 13311 ♯chash 13972 〈“cs2 14482 SymGrpcsymg 18889 toCycctocyc 31275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-substr 14282 df-pfx 14312 df-csh 14430 df-s2 14489 df-tocyc 31276 |
This theorem is referenced by: cycpmco2lem1 31295 cyc3co2 31309 |
Copyright terms: Public domain | W3C validator |