| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cyc2fv1 | Structured version Visualization version GIF version | ||
| Description: Function value of a 2-cycle at the first point. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
| Ref | Expression |
|---|---|
| cycpm2.c | ⊢ 𝐶 = (toCyc‘𝐷) |
| cycpm2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| cycpm2.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| cycpm2.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| cycpm2.1 | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
| cycpm2cl.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| Ref | Expression |
|---|---|
| cyc2fv1 | ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘𝐼) = 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycpm2.c | . . 3 ⊢ 𝐶 = (toCyc‘𝐷) | |
| 2 | cycpm2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | cycpm2.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
| 4 | cycpm2.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
| 5 | 3, 4 | s2cld 14837 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽”〉 ∈ Word 𝐷) |
| 6 | cycpm2.1 | . . . 4 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
| 7 | 3, 4, 6 | s2f1 32866 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
| 8 | c0ex 11168 | . . . . . 6 ⊢ 0 ∈ V | |
| 9 | 8 | snid 4626 | . . . . 5 ⊢ 0 ∈ {0} |
| 10 | s2len 14855 | . . . . . . . . 9 ⊢ (♯‘〈“𝐼𝐽”〉) = 2 | |
| 11 | 10 | oveq1i 7397 | . . . . . . . 8 ⊢ ((♯‘〈“𝐼𝐽”〉) − 1) = (2 − 1) |
| 12 | 2m1e1 12307 | . . . . . . . 8 ⊢ (2 − 1) = 1 | |
| 13 | 11, 12 | eqtr2i 2753 | . . . . . . 7 ⊢ 1 = ((♯‘〈“𝐼𝐽”〉) − 1) |
| 14 | 13 | oveq2i 7398 | . . . . . 6 ⊢ (0..^1) = (0..^((♯‘〈“𝐼𝐽”〉) − 1)) |
| 15 | fzo01 13708 | . . . . . 6 ⊢ (0..^1) = {0} | |
| 16 | 14, 15 | eqtr3i 2754 | . . . . 5 ⊢ (0..^((♯‘〈“𝐼𝐽”〉) − 1)) = {0} |
| 17 | 9, 16 | eleqtrri 2827 | . . . 4 ⊢ 0 ∈ (0..^((♯‘〈“𝐼𝐽”〉) − 1)) |
| 18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ (0..^((♯‘〈“𝐼𝐽”〉) − 1))) |
| 19 | 1, 2, 5, 7, 18 | cycpmfv1 33070 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘(〈“𝐼𝐽”〉‘0)) = (〈“𝐼𝐽”〉‘(0 + 1))) |
| 20 | s2fv0 14853 | . . . 4 ⊢ (𝐼 ∈ 𝐷 → (〈“𝐼𝐽”〉‘0) = 𝐼) | |
| 21 | 3, 20 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘0) = 𝐼) |
| 22 | 21 | fveq2d 6862 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘(〈“𝐼𝐽”〉‘0)) = ((𝐶‘〈“𝐼𝐽”〉)‘𝐼)) |
| 23 | 0p1e1 12303 | . . . 4 ⊢ (0 + 1) = 1 | |
| 24 | 23 | fveq2i 6861 | . . 3 ⊢ (〈“𝐼𝐽”〉‘(0 + 1)) = (〈“𝐼𝐽”〉‘1) |
| 25 | s2fv1 14854 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽”〉‘1) = 𝐽) | |
| 26 | 4, 25 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘1) = 𝐽) |
| 27 | 24, 26 | eqtrid 2776 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘(0 + 1)) = 𝐽) |
| 28 | 19, 22, 27 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘𝐼) = 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {csn 4589 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 − cmin 11405 2c2 12241 ..^cfzo 13615 ♯chash 14295 〈“cs2 14807 SymGrpcsymg 19299 toCycctocyc 33063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-substr 14606 df-pfx 14636 df-csh 14754 df-s2 14814 df-tocyc 33064 |
| This theorem is referenced by: cycpmco2lem1 33083 cyc3co2 33097 |
| Copyright terms: Public domain | W3C validator |