Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc2fv1 Structured version   Visualization version   GIF version

Theorem cyc2fv1 33076
Description: Function value of a 2-cycle at the first point. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cycpm2.c 𝐶 = (toCyc‘𝐷)
cycpm2.d (𝜑𝐷𝑉)
cycpm2.i (𝜑𝐼𝐷)
cycpm2.j (𝜑𝐽𝐷)
cycpm2.1 (𝜑𝐼𝐽)
cycpm2cl.s 𝑆 = (SymGrp‘𝐷)
Assertion
Ref Expression
cyc2fv1 (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐼) = 𝐽)

Proof of Theorem cyc2fv1
StepHypRef Expression
1 cycpm2.c . . 3 𝐶 = (toCyc‘𝐷)
2 cycpm2.d . . 3 (𝜑𝐷𝑉)
3 cycpm2.i . . . 4 (𝜑𝐼𝐷)
4 cycpm2.j . . . 4 (𝜑𝐽𝐷)
53, 4s2cld 14796 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩ ∈ Word 𝐷)
6 cycpm2.1 . . . 4 (𝜑𝐼𝐽)
73, 4, 6s2f1 32899 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)
8 c0ex 11128 . . . . . 6 0 ∈ V
98snid 4616 . . . . 5 0 ∈ {0}
10 s2len 14814 . . . . . . . . 9 (♯‘⟨“𝐼𝐽”⟩) = 2
1110oveq1i 7363 . . . . . . . 8 ((♯‘⟨“𝐼𝐽”⟩) − 1) = (2 − 1)
12 2m1e1 12267 . . . . . . . 8 (2 − 1) = 1
1311, 12eqtr2i 2753 . . . . . . 7 1 = ((♯‘⟨“𝐼𝐽”⟩) − 1)
1413oveq2i 7364 . . . . . 6 (0..^1) = (0..^((♯‘⟨“𝐼𝐽”⟩) − 1))
15 fzo01 13668 . . . . . 6 (0..^1) = {0}
1614, 15eqtr3i 2754 . . . . 5 (0..^((♯‘⟨“𝐼𝐽”⟩) − 1)) = {0}
179, 16eleqtrri 2827 . . . 4 0 ∈ (0..^((♯‘⟨“𝐼𝐽”⟩) − 1))
1817a1i 11 . . 3 (𝜑 → 0 ∈ (0..^((♯‘⟨“𝐼𝐽”⟩) − 1)))
191, 2, 5, 7, 18cycpmfv1 33068 . 2 (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘(⟨“𝐼𝐽”⟩‘0)) = (⟨“𝐼𝐽”⟩‘(0 + 1)))
20 s2fv0 14812 . . . 4 (𝐼𝐷 → (⟨“𝐼𝐽”⟩‘0) = 𝐼)
213, 20syl 17 . . 3 (𝜑 → (⟨“𝐼𝐽”⟩‘0) = 𝐼)
2221fveq2d 6830 . 2 (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘(⟨“𝐼𝐽”⟩‘0)) = ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐼))
23 0p1e1 12263 . . . 4 (0 + 1) = 1
2423fveq2i 6829 . . 3 (⟨“𝐼𝐽”⟩‘(0 + 1)) = (⟨“𝐼𝐽”⟩‘1)
25 s2fv1 14813 . . . 4 (𝐽𝐷 → (⟨“𝐼𝐽”⟩‘1) = 𝐽)
264, 25syl 17 . . 3 (𝜑 → (⟨“𝐼𝐽”⟩‘1) = 𝐽)
2724, 26eqtrid 2776 . 2 (𝜑 → (⟨“𝐼𝐽”⟩‘(0 + 1)) = 𝐽)
2819, 22, 273eqtr3d 2772 1 (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐼) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  {csn 4579  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   + caddc 11031  cmin 11365  2c2 12201  ..^cfzo 13575  chash 14255  ⟨“cs2 14766  SymGrpcsymg 19266  toCycctocyc 33061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-csh 14713  df-s2 14773  df-tocyc 33062
This theorem is referenced by:  cycpmco2lem1  33081  cyc3co2  33095
  Copyright terms: Public domain W3C validator