Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc2fv1 Structured version   Visualization version   GIF version

Theorem cyc2fv1 33078
Description: Function value of a 2-cycle at the first point. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cycpm2.c 𝐶 = (toCyc‘𝐷)
cycpm2.d (𝜑𝐷𝑉)
cycpm2.i (𝜑𝐼𝐷)
cycpm2.j (𝜑𝐽𝐷)
cycpm2.1 (𝜑𝐼𝐽)
cycpm2cl.s 𝑆 = (SymGrp‘𝐷)
Assertion
Ref Expression
cyc2fv1 (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐼) = 𝐽)

Proof of Theorem cyc2fv1
StepHypRef Expression
1 cycpm2.c . . 3 𝐶 = (toCyc‘𝐷)
2 cycpm2.d . . 3 (𝜑𝐷𝑉)
3 cycpm2.i . . . 4 (𝜑𝐼𝐷)
4 cycpm2.j . . . 4 (𝜑𝐽𝐷)
53, 4s2cld 14837 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩ ∈ Word 𝐷)
6 cycpm2.1 . . . 4 (𝜑𝐼𝐽)
73, 4, 6s2f1 32866 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)
8 c0ex 11168 . . . . . 6 0 ∈ V
98snid 4626 . . . . 5 0 ∈ {0}
10 s2len 14855 . . . . . . . . 9 (♯‘⟨“𝐼𝐽”⟩) = 2
1110oveq1i 7397 . . . . . . . 8 ((♯‘⟨“𝐼𝐽”⟩) − 1) = (2 − 1)
12 2m1e1 12307 . . . . . . . 8 (2 − 1) = 1
1311, 12eqtr2i 2753 . . . . . . 7 1 = ((♯‘⟨“𝐼𝐽”⟩) − 1)
1413oveq2i 7398 . . . . . 6 (0..^1) = (0..^((♯‘⟨“𝐼𝐽”⟩) − 1))
15 fzo01 13708 . . . . . 6 (0..^1) = {0}
1614, 15eqtr3i 2754 . . . . 5 (0..^((♯‘⟨“𝐼𝐽”⟩) − 1)) = {0}
179, 16eleqtrri 2827 . . . 4 0 ∈ (0..^((♯‘⟨“𝐼𝐽”⟩) − 1))
1817a1i 11 . . 3 (𝜑 → 0 ∈ (0..^((♯‘⟨“𝐼𝐽”⟩) − 1)))
191, 2, 5, 7, 18cycpmfv1 33070 . 2 (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘(⟨“𝐼𝐽”⟩‘0)) = (⟨“𝐼𝐽”⟩‘(0 + 1)))
20 s2fv0 14853 . . . 4 (𝐼𝐷 → (⟨“𝐼𝐽”⟩‘0) = 𝐼)
213, 20syl 17 . . 3 (𝜑 → (⟨“𝐼𝐽”⟩‘0) = 𝐼)
2221fveq2d 6862 . 2 (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘(⟨“𝐼𝐽”⟩‘0)) = ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐼))
23 0p1e1 12303 . . . 4 (0 + 1) = 1
2423fveq2i 6861 . . 3 (⟨“𝐼𝐽”⟩‘(0 + 1)) = (⟨“𝐼𝐽”⟩‘1)
25 s2fv1 14854 . . . 4 (𝐽𝐷 → (⟨“𝐼𝐽”⟩‘1) = 𝐽)
264, 25syl 17 . . 3 (𝜑 → (⟨“𝐼𝐽”⟩‘1) = 𝐽)
2724, 26eqtrid 2776 . 2 (𝜑 → (⟨“𝐼𝐽”⟩‘(0 + 1)) = 𝐽)
2819, 22, 273eqtr3d 2772 1 (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐼) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  {csn 4589  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  2c2 12241  ..^cfzo 13615  chash 14295  ⟨“cs2 14807  SymGrpcsymg 19299  toCycctocyc 33063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-csh 14754  df-s2 14814  df-tocyc 33064
This theorem is referenced by:  cycpmco2lem1  33083  cyc3co2  33097
  Copyright terms: Public domain W3C validator