Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3kgrtriexlem5 Structured version   Visualization version   GIF version

Theorem gpg3kgrtriexlem5 47989
Description: Lemma 5 for gpg3kgrtriex 47991. (Contributed by AV, 1-Oct-2025.)
Hypothesis
Ref Expression
gpg3kgrtriex.n 𝑁 = (3 · 𝐾)
Assertion
Ref Expression
gpg3kgrtriexlem5 (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁))

Proof of Theorem gpg3kgrtriexlem5
StepHypRef Expression
1 3nn 12328 . . . . . . 7 3 ∈ ℕ
21a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 3 ∈ ℕ)
3 2eluzge1 12919 . . . . . . . . 9 2 ∈ (ℤ‘1)
4 eluzfz2 13555 . . . . . . . . 9 (2 ∈ (ℤ‘1) → 2 ∈ (1...2))
53, 4ax-mp 5 . . . . . . . 8 2 ∈ (1...2)
6 3m1e2 12377 . . . . . . . . 9 (3 − 1) = 2
76oveq2i 7425 . . . . . . . 8 (1...(3 − 1)) = (1...2)
85, 7eleqtrri 2832 . . . . . . 7 2 ∈ (1...(3 − 1))
98a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 2 ∈ (1...(3 − 1)))
10 fzm1ndvds 16342 . . . . . 6 ((3 ∈ ℕ ∧ 2 ∈ (1...(3 − 1))) → ¬ 3 ∥ 2)
112, 9, 10syl2anc 584 . . . . 5 (𝐾 ∈ ℕ → ¬ 3 ∥ 2)
12 3z 12634 . . . . . . 7 3 ∈ ℤ
1312a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 3 ∈ ℤ)
14 2z 12633 . . . . . . 7 2 ∈ ℤ
1514a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 2 ∈ ℤ)
16 nnz 12618 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
17 nnne0 12283 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ≠ 0)
18 dvdsmulcr 16306 . . . . . 6 ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((3 · 𝐾) ∥ (2 · 𝐾) ↔ 3 ∥ 2))
1913, 15, 16, 17, 18syl112anc 1375 . . . . 5 (𝐾 ∈ ℕ → ((3 · 𝐾) ∥ (2 · 𝐾) ↔ 3 ∥ 2))
2011, 19mtbird 325 . . . 4 (𝐾 ∈ ℕ → ¬ (3 · 𝐾) ∥ (2 · 𝐾))
21 gpg3kgrtriex.n . . . . 5 𝑁 = (3 · 𝐾)
2221breq1i 5132 . . . 4 (𝑁 ∥ (2 · 𝐾) ↔ (3 · 𝐾) ∥ (2 · 𝐾))
2320, 22sylnibr 329 . . 3 (𝐾 ∈ ℕ → ¬ 𝑁 ∥ (2 · 𝐾))
24 id 22 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
252, 24nnmulcld 12302 . . . . . 6 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ)
2621, 25eqeltrid 2837 . . . . 5 (𝐾 ∈ ℕ → 𝑁 ∈ ℕ)
27 2nn 12322 . . . . . . . 8 2 ∈ ℕ
2827a1i 11 . . . . . . 7 (𝐾 ∈ ℕ → 2 ∈ ℕ)
2928, 24nnmulcld 12302 . . . . . 6 (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℕ)
3029nnzd 12624 . . . . 5 (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℤ)
31 dvdsval3 16277 . . . . 5 ((𝑁 ∈ ℕ ∧ (2 · 𝐾) ∈ ℤ) → (𝑁 ∥ (2 · 𝐾) ↔ ((2 · 𝐾) mod 𝑁) = 0))
3226, 30, 31syl2anc 584 . . . 4 (𝐾 ∈ ℕ → (𝑁 ∥ (2 · 𝐾) ↔ ((2 · 𝐾) mod 𝑁) = 0))
33 nncn 12257 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
34332timesd 12493 . . . . . 6 (𝐾 ∈ ℕ → (2 · 𝐾) = (𝐾 + 𝐾))
3534oveq1d 7429 . . . . 5 (𝐾 ∈ ℕ → ((2 · 𝐾) mod 𝑁) = ((𝐾 + 𝐾) mod 𝑁))
3635eqeq1d 2736 . . . 4 (𝐾 ∈ ℕ → (((2 · 𝐾) mod 𝑁) = 0 ↔ ((𝐾 + 𝐾) mod 𝑁) = 0))
37 summodnegmod 16307 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐾 + 𝐾) mod 𝑁) = 0 ↔ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁)))
3816, 16, 26, 37syl3anc 1372 . . . 4 (𝐾 ∈ ℕ → (((𝐾 + 𝐾) mod 𝑁) = 0 ↔ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁)))
3932, 36, 383bitrd 305 . . 3 (𝐾 ∈ ℕ → (𝑁 ∥ (2 · 𝐾) ↔ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁)))
4023, 39mtbid 324 . 2 (𝐾 ∈ ℕ → ¬ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁))
4140neqned 2938 1 (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5125  cfv 6542  (class class class)co 7414  0cc0 11138  1c1 11139   + caddc 11141   · cmul 11143  cmin 11475  -cneg 11476  cn 12249  2c2 12304  3c3 12305  cz 12597  cuz 12861  ...cfz 13530   mod cmo 13892  cdvds 16273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-z 12598  df-uz 12862  df-rp 13018  df-fz 13531  df-fl 13815  df-mod 13893  df-dvds 16274
This theorem is referenced by:  gpg3kgrtriex  47991
  Copyright terms: Public domain W3C validator