| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg3kgrtriexlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for gpg3kgrtriex 48074. (Contributed by AV, 1-Oct-2025.) |
| Ref | Expression |
|---|---|
| gpg3kgrtriex.n | ⊢ 𝑁 = (3 · 𝐾) |
| Ref | Expression |
|---|---|
| gpg3kgrtriexlem5 | ⊢ (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn 12225 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 3 ∈ ℕ) |
| 3 | 2eluzge1 12801 | . . . . . . . . 9 ⊢ 2 ∈ (ℤ≥‘1) | |
| 4 | eluzfz2 13453 | . . . . . . . . 9 ⊢ (2 ∈ (ℤ≥‘1) → 2 ∈ (1...2)) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . . 8 ⊢ 2 ∈ (1...2) |
| 6 | 3m1e2 12269 | . . . . . . . . 9 ⊢ (3 − 1) = 2 | |
| 7 | 6 | oveq2i 7364 | . . . . . . . 8 ⊢ (1...(3 − 1)) = (1...2) |
| 8 | 5, 7 | eleqtrri 2827 | . . . . . . 7 ⊢ 2 ∈ (1...(3 − 1)) |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 2 ∈ (1...(3 − 1))) |
| 10 | fzm1ndvds 16251 | . . . . . 6 ⊢ ((3 ∈ ℕ ∧ 2 ∈ (1...(3 − 1))) → ¬ 3 ∥ 2) | |
| 11 | 2, 9, 10 | syl2anc 584 | . . . . 5 ⊢ (𝐾 ∈ ℕ → ¬ 3 ∥ 2) |
| 12 | 3z 12526 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
| 13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 3 ∈ ℤ) |
| 14 | 2z 12525 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 2 ∈ ℤ) |
| 16 | nnz 12510 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℤ) | |
| 17 | nnne0 12180 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 𝐾 ≠ 0) | |
| 18 | dvdsmulcr 16214 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((3 · 𝐾) ∥ (2 · 𝐾) ↔ 3 ∥ 2)) | |
| 19 | 13, 15, 16, 17, 18 | syl112anc 1376 | . . . . 5 ⊢ (𝐾 ∈ ℕ → ((3 · 𝐾) ∥ (2 · 𝐾) ↔ 3 ∥ 2)) |
| 20 | 11, 19 | mtbird 325 | . . . 4 ⊢ (𝐾 ∈ ℕ → ¬ (3 · 𝐾) ∥ (2 · 𝐾)) |
| 21 | gpg3kgrtriex.n | . . . . 5 ⊢ 𝑁 = (3 · 𝐾) | |
| 22 | 21 | breq1i 5102 | . . . 4 ⊢ (𝑁 ∥ (2 · 𝐾) ↔ (3 · 𝐾) ∥ (2 · 𝐾)) |
| 23 | 20, 22 | sylnibr 329 | . . 3 ⊢ (𝐾 ∈ ℕ → ¬ 𝑁 ∥ (2 · 𝐾)) |
| 24 | id 22 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℕ) | |
| 25 | 2, 24 | nnmulcld 12199 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ) |
| 26 | 21, 25 | eqeltrid 2832 | . . . . 5 ⊢ (𝐾 ∈ ℕ → 𝑁 ∈ ℕ) |
| 27 | 2nn 12219 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
| 28 | 27 | a1i 11 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 2 ∈ ℕ) |
| 29 | 28, 24 | nnmulcld 12199 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℕ) |
| 30 | 29 | nnzd 12516 | . . . . 5 ⊢ (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℤ) |
| 31 | dvdsval3 16185 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (2 · 𝐾) ∈ ℤ) → (𝑁 ∥ (2 · 𝐾) ↔ ((2 · 𝐾) mod 𝑁) = 0)) | |
| 32 | 26, 30, 31 | syl2anc 584 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝑁 ∥ (2 · 𝐾) ↔ ((2 · 𝐾) mod 𝑁) = 0)) |
| 33 | nncn 12154 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℂ) | |
| 34 | 33 | 2timesd 12385 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (2 · 𝐾) = (𝐾 + 𝐾)) |
| 35 | 34 | oveq1d 7368 | . . . . 5 ⊢ (𝐾 ∈ ℕ → ((2 · 𝐾) mod 𝑁) = ((𝐾 + 𝐾) mod 𝑁)) |
| 36 | 35 | eqeq1d 2731 | . . . 4 ⊢ (𝐾 ∈ ℕ → (((2 · 𝐾) mod 𝑁) = 0 ↔ ((𝐾 + 𝐾) mod 𝑁) = 0)) |
| 37 | summodnegmod 16215 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐾 + 𝐾) mod 𝑁) = 0 ↔ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁))) | |
| 38 | 16, 16, 26, 37 | syl3anc 1373 | . . . 4 ⊢ (𝐾 ∈ ℕ → (((𝐾 + 𝐾) mod 𝑁) = 0 ↔ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁))) |
| 39 | 32, 36, 38 | 3bitrd 305 | . . 3 ⊢ (𝐾 ∈ ℕ → (𝑁 ∥ (2 · 𝐾) ↔ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁))) |
| 40 | 23, 39 | mtbid 324 | . 2 ⊢ (𝐾 ∈ ℕ → ¬ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁)) |
| 41 | 40 | neqned 2932 | 1 ⊢ (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 − cmin 11365 -cneg 11366 ℕcn 12146 2c2 12201 3c3 12202 ℤcz 12489 ℤ≥cuz 12753 ...cfz 13428 mod cmo 13791 ∥ cdvds 16181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fl 13714 df-mod 13792 df-dvds 16182 |
| This theorem is referenced by: gpg3kgrtriex 48074 |
| Copyright terms: Public domain | W3C validator |