| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg3kgrtriexlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for gpg3kgrtriex 48033. (Contributed by AV, 1-Oct-2025.) |
| Ref | Expression |
|---|---|
| gpg3kgrtriex.n | ⊢ 𝑁 = (3 · 𝐾) |
| Ref | Expression |
|---|---|
| gpg3kgrtriexlem5 | ⊢ (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn 12276 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 3 ∈ ℕ) |
| 3 | 2eluzge1 12867 | . . . . . . . . 9 ⊢ 2 ∈ (ℤ≥‘1) | |
| 4 | eluzfz2 13506 | . . . . . . . . 9 ⊢ (2 ∈ (ℤ≥‘1) → 2 ∈ (1...2)) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . . 8 ⊢ 2 ∈ (1...2) |
| 6 | 3m1e2 12325 | . . . . . . . . 9 ⊢ (3 − 1) = 2 | |
| 7 | 6 | oveq2i 7405 | . . . . . . . 8 ⊢ (1...(3 − 1)) = (1...2) |
| 8 | 5, 7 | eleqtrri 2828 | . . . . . . 7 ⊢ 2 ∈ (1...(3 − 1)) |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 2 ∈ (1...(3 − 1))) |
| 10 | fzm1ndvds 16298 | . . . . . 6 ⊢ ((3 ∈ ℕ ∧ 2 ∈ (1...(3 − 1))) → ¬ 3 ∥ 2) | |
| 11 | 2, 9, 10 | syl2anc 584 | . . . . 5 ⊢ (𝐾 ∈ ℕ → ¬ 3 ∥ 2) |
| 12 | 3z 12582 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
| 13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 3 ∈ ℤ) |
| 14 | 2z 12581 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 2 ∈ ℤ) |
| 16 | nnz 12566 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℤ) | |
| 17 | nnne0 12231 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 𝐾 ≠ 0) | |
| 18 | dvdsmulcr 16262 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((3 · 𝐾) ∥ (2 · 𝐾) ↔ 3 ∥ 2)) | |
| 19 | 13, 15, 16, 17, 18 | syl112anc 1376 | . . . . 5 ⊢ (𝐾 ∈ ℕ → ((3 · 𝐾) ∥ (2 · 𝐾) ↔ 3 ∥ 2)) |
| 20 | 11, 19 | mtbird 325 | . . . 4 ⊢ (𝐾 ∈ ℕ → ¬ (3 · 𝐾) ∥ (2 · 𝐾)) |
| 21 | gpg3kgrtriex.n | . . . . 5 ⊢ 𝑁 = (3 · 𝐾) | |
| 22 | 21 | breq1i 5122 | . . . 4 ⊢ (𝑁 ∥ (2 · 𝐾) ↔ (3 · 𝐾) ∥ (2 · 𝐾)) |
| 23 | 20, 22 | sylnibr 329 | . . 3 ⊢ (𝐾 ∈ ℕ → ¬ 𝑁 ∥ (2 · 𝐾)) |
| 24 | id 22 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℕ) | |
| 25 | 2, 24 | nnmulcld 12250 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ) |
| 26 | 21, 25 | eqeltrid 2833 | . . . . 5 ⊢ (𝐾 ∈ ℕ → 𝑁 ∈ ℕ) |
| 27 | 2nn 12270 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
| 28 | 27 | a1i 11 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 2 ∈ ℕ) |
| 29 | 28, 24 | nnmulcld 12250 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℕ) |
| 30 | 29 | nnzd 12572 | . . . . 5 ⊢ (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℤ) |
| 31 | dvdsval3 16233 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (2 · 𝐾) ∈ ℤ) → (𝑁 ∥ (2 · 𝐾) ↔ ((2 · 𝐾) mod 𝑁) = 0)) | |
| 32 | 26, 30, 31 | syl2anc 584 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝑁 ∥ (2 · 𝐾) ↔ ((2 · 𝐾) mod 𝑁) = 0)) |
| 33 | nncn 12205 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℂ) | |
| 34 | 33 | 2timesd 12441 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (2 · 𝐾) = (𝐾 + 𝐾)) |
| 35 | 34 | oveq1d 7409 | . . . . 5 ⊢ (𝐾 ∈ ℕ → ((2 · 𝐾) mod 𝑁) = ((𝐾 + 𝐾) mod 𝑁)) |
| 36 | 35 | eqeq1d 2732 | . . . 4 ⊢ (𝐾 ∈ ℕ → (((2 · 𝐾) mod 𝑁) = 0 ↔ ((𝐾 + 𝐾) mod 𝑁) = 0)) |
| 37 | summodnegmod 16263 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐾 + 𝐾) mod 𝑁) = 0 ↔ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁))) | |
| 38 | 16, 16, 26, 37 | syl3anc 1373 | . . . 4 ⊢ (𝐾 ∈ ℕ → (((𝐾 + 𝐾) mod 𝑁) = 0 ↔ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁))) |
| 39 | 32, 36, 38 | 3bitrd 305 | . . 3 ⊢ (𝐾 ∈ ℕ → (𝑁 ∥ (2 · 𝐾) ↔ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁))) |
| 40 | 23, 39 | mtbid 324 | . 2 ⊢ (𝐾 ∈ ℕ → ¬ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁)) |
| 41 | 40 | neqned 2934 | 1 ⊢ (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 0cc0 11086 1c1 11087 + caddc 11089 · cmul 11091 − cmin 11423 -cneg 11424 ℕcn 12197 2c2 12252 3c3 12253 ℤcz 12545 ℤ≥cuz 12809 ...cfz 13481 mod cmo 13843 ∥ cdvds 16229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-inf 9412 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-n0 12459 df-z 12546 df-uz 12810 df-rp 12966 df-fz 13482 df-fl 13766 df-mod 13844 df-dvds 16230 |
| This theorem is referenced by: gpg3kgrtriex 48033 |
| Copyright terms: Public domain | W3C validator |