Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3kgrtriexlem5 Structured version   Visualization version   GIF version

Theorem gpg3kgrtriexlem5 48072
Description: Lemma 5 for gpg3kgrtriex 48074. (Contributed by AV, 1-Oct-2025.)
Hypothesis
Ref Expression
gpg3kgrtriex.n 𝑁 = (3 · 𝐾)
Assertion
Ref Expression
gpg3kgrtriexlem5 (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁))

Proof of Theorem gpg3kgrtriexlem5
StepHypRef Expression
1 3nn 12225 . . . . . . 7 3 ∈ ℕ
21a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 3 ∈ ℕ)
3 2eluzge1 12801 . . . . . . . . 9 2 ∈ (ℤ‘1)
4 eluzfz2 13453 . . . . . . . . 9 (2 ∈ (ℤ‘1) → 2 ∈ (1...2))
53, 4ax-mp 5 . . . . . . . 8 2 ∈ (1...2)
6 3m1e2 12269 . . . . . . . . 9 (3 − 1) = 2
76oveq2i 7364 . . . . . . . 8 (1...(3 − 1)) = (1...2)
85, 7eleqtrri 2827 . . . . . . 7 2 ∈ (1...(3 − 1))
98a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 2 ∈ (1...(3 − 1)))
10 fzm1ndvds 16251 . . . . . 6 ((3 ∈ ℕ ∧ 2 ∈ (1...(3 − 1))) → ¬ 3 ∥ 2)
112, 9, 10syl2anc 584 . . . . 5 (𝐾 ∈ ℕ → ¬ 3 ∥ 2)
12 3z 12526 . . . . . . 7 3 ∈ ℤ
1312a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 3 ∈ ℤ)
14 2z 12525 . . . . . . 7 2 ∈ ℤ
1514a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 2 ∈ ℤ)
16 nnz 12510 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
17 nnne0 12180 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ≠ 0)
18 dvdsmulcr 16214 . . . . . 6 ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((3 · 𝐾) ∥ (2 · 𝐾) ↔ 3 ∥ 2))
1913, 15, 16, 17, 18syl112anc 1376 . . . . 5 (𝐾 ∈ ℕ → ((3 · 𝐾) ∥ (2 · 𝐾) ↔ 3 ∥ 2))
2011, 19mtbird 325 . . . 4 (𝐾 ∈ ℕ → ¬ (3 · 𝐾) ∥ (2 · 𝐾))
21 gpg3kgrtriex.n . . . . 5 𝑁 = (3 · 𝐾)
2221breq1i 5102 . . . 4 (𝑁 ∥ (2 · 𝐾) ↔ (3 · 𝐾) ∥ (2 · 𝐾))
2320, 22sylnibr 329 . . 3 (𝐾 ∈ ℕ → ¬ 𝑁 ∥ (2 · 𝐾))
24 id 22 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
252, 24nnmulcld 12199 . . . . . 6 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ)
2621, 25eqeltrid 2832 . . . . 5 (𝐾 ∈ ℕ → 𝑁 ∈ ℕ)
27 2nn 12219 . . . . . . . 8 2 ∈ ℕ
2827a1i 11 . . . . . . 7 (𝐾 ∈ ℕ → 2 ∈ ℕ)
2928, 24nnmulcld 12199 . . . . . 6 (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℕ)
3029nnzd 12516 . . . . 5 (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℤ)
31 dvdsval3 16185 . . . . 5 ((𝑁 ∈ ℕ ∧ (2 · 𝐾) ∈ ℤ) → (𝑁 ∥ (2 · 𝐾) ↔ ((2 · 𝐾) mod 𝑁) = 0))
3226, 30, 31syl2anc 584 . . . 4 (𝐾 ∈ ℕ → (𝑁 ∥ (2 · 𝐾) ↔ ((2 · 𝐾) mod 𝑁) = 0))
33 nncn 12154 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
34332timesd 12385 . . . . . 6 (𝐾 ∈ ℕ → (2 · 𝐾) = (𝐾 + 𝐾))
3534oveq1d 7368 . . . . 5 (𝐾 ∈ ℕ → ((2 · 𝐾) mod 𝑁) = ((𝐾 + 𝐾) mod 𝑁))
3635eqeq1d 2731 . . . 4 (𝐾 ∈ ℕ → (((2 · 𝐾) mod 𝑁) = 0 ↔ ((𝐾 + 𝐾) mod 𝑁) = 0))
37 summodnegmod 16215 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐾 + 𝐾) mod 𝑁) = 0 ↔ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁)))
3816, 16, 26, 37syl3anc 1373 . . . 4 (𝐾 ∈ ℕ → (((𝐾 + 𝐾) mod 𝑁) = 0 ↔ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁)))
3932, 36, 383bitrd 305 . . 3 (𝐾 ∈ ℕ → (𝑁 ∥ (2 · 𝐾) ↔ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁)))
4023, 39mtbid 324 . 2 (𝐾 ∈ ℕ → ¬ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁))
4140neqned 2932 1 (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365  -cneg 11366  cn 12146  2c2 12201  3c3 12202  cz 12489  cuz 12753  ...cfz 13428   mod cmo 13791  cdvds 16181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fl 13714  df-mod 13792  df-dvds 16182
This theorem is referenced by:  gpg3kgrtriex  48074
  Copyright terms: Public domain W3C validator