| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg3kgrtriexlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for gpg3kgrtriex 48119. (Contributed by AV, 1-Oct-2025.) |
| Ref | Expression |
|---|---|
| gpg3kgrtriex.n | ⊢ 𝑁 = (3 · 𝐾) |
| Ref | Expression |
|---|---|
| gpg3kgrtriexlem5 | ⊢ (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn 12201 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 3 ∈ ℕ) |
| 3 | 2eluzge1 12777 | . . . . . . . . 9 ⊢ 2 ∈ (ℤ≥‘1) | |
| 4 | eluzfz2 13429 | . . . . . . . . 9 ⊢ (2 ∈ (ℤ≥‘1) → 2 ∈ (1...2)) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . . 8 ⊢ 2 ∈ (1...2) |
| 6 | 3m1e2 12245 | . . . . . . . . 9 ⊢ (3 − 1) = 2 | |
| 7 | 6 | oveq2i 7357 | . . . . . . . 8 ⊢ (1...(3 − 1)) = (1...2) |
| 8 | 5, 7 | eleqtrri 2830 | . . . . . . 7 ⊢ 2 ∈ (1...(3 − 1)) |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 2 ∈ (1...(3 − 1))) |
| 10 | fzm1ndvds 16230 | . . . . . 6 ⊢ ((3 ∈ ℕ ∧ 2 ∈ (1...(3 − 1))) → ¬ 3 ∥ 2) | |
| 11 | 2, 9, 10 | syl2anc 584 | . . . . 5 ⊢ (𝐾 ∈ ℕ → ¬ 3 ∥ 2) |
| 12 | 3z 12502 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
| 13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 3 ∈ ℤ) |
| 14 | 2z 12501 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 2 ∈ ℤ) |
| 16 | nnz 12486 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℤ) | |
| 17 | nnne0 12156 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 𝐾 ≠ 0) | |
| 18 | dvdsmulcr 16193 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((3 · 𝐾) ∥ (2 · 𝐾) ↔ 3 ∥ 2)) | |
| 19 | 13, 15, 16, 17, 18 | syl112anc 1376 | . . . . 5 ⊢ (𝐾 ∈ ℕ → ((3 · 𝐾) ∥ (2 · 𝐾) ↔ 3 ∥ 2)) |
| 20 | 11, 19 | mtbird 325 | . . . 4 ⊢ (𝐾 ∈ ℕ → ¬ (3 · 𝐾) ∥ (2 · 𝐾)) |
| 21 | gpg3kgrtriex.n | . . . . 5 ⊢ 𝑁 = (3 · 𝐾) | |
| 22 | 21 | breq1i 5098 | . . . 4 ⊢ (𝑁 ∥ (2 · 𝐾) ↔ (3 · 𝐾) ∥ (2 · 𝐾)) |
| 23 | 20, 22 | sylnibr 329 | . . 3 ⊢ (𝐾 ∈ ℕ → ¬ 𝑁 ∥ (2 · 𝐾)) |
| 24 | id 22 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℕ) | |
| 25 | 2, 24 | nnmulcld 12175 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ) |
| 26 | 21, 25 | eqeltrid 2835 | . . . . 5 ⊢ (𝐾 ∈ ℕ → 𝑁 ∈ ℕ) |
| 27 | 2nn 12195 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
| 28 | 27 | a1i 11 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 2 ∈ ℕ) |
| 29 | 28, 24 | nnmulcld 12175 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℕ) |
| 30 | 29 | nnzd 12492 | . . . . 5 ⊢ (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℤ) |
| 31 | dvdsval3 16164 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (2 · 𝐾) ∈ ℤ) → (𝑁 ∥ (2 · 𝐾) ↔ ((2 · 𝐾) mod 𝑁) = 0)) | |
| 32 | 26, 30, 31 | syl2anc 584 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝑁 ∥ (2 · 𝐾) ↔ ((2 · 𝐾) mod 𝑁) = 0)) |
| 33 | nncn 12130 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℂ) | |
| 34 | 33 | 2timesd 12361 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (2 · 𝐾) = (𝐾 + 𝐾)) |
| 35 | 34 | oveq1d 7361 | . . . . 5 ⊢ (𝐾 ∈ ℕ → ((2 · 𝐾) mod 𝑁) = ((𝐾 + 𝐾) mod 𝑁)) |
| 36 | 35 | eqeq1d 2733 | . . . 4 ⊢ (𝐾 ∈ ℕ → (((2 · 𝐾) mod 𝑁) = 0 ↔ ((𝐾 + 𝐾) mod 𝑁) = 0)) |
| 37 | summodnegmod 16194 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐾 + 𝐾) mod 𝑁) = 0 ↔ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁))) | |
| 38 | 16, 16, 26, 37 | syl3anc 1373 | . . . 4 ⊢ (𝐾 ∈ ℕ → (((𝐾 + 𝐾) mod 𝑁) = 0 ↔ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁))) |
| 39 | 32, 36, 38 | 3bitrd 305 | . . 3 ⊢ (𝐾 ∈ ℕ → (𝑁 ∥ (2 · 𝐾) ↔ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁))) |
| 40 | 23, 39 | mtbid 324 | . 2 ⊢ (𝐾 ∈ ℕ → ¬ (𝐾 mod 𝑁) = (-𝐾 mod 𝑁)) |
| 41 | 40 | neqned 2935 | 1 ⊢ (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 0cc0 11003 1c1 11004 + caddc 11006 · cmul 11008 − cmin 11341 -cneg 11342 ℕcn 12122 2c2 12177 3c3 12178 ℤcz 12465 ℤ≥cuz 12729 ...cfz 13404 mod cmo 13770 ∥ cdvds 16160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-fz 13405 df-fl 13693 df-mod 13771 df-dvds 16161 |
| This theorem is referenced by: gpg3kgrtriex 48119 |
| Copyright terms: Public domain | W3C validator |