| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hashpss | Structured version Visualization version GIF version | ||
| Description: The size of a proper subset is less than the size of its finite superset. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| hashpss | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐵) < (♯‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐴 ∈ Fin) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ⊊ 𝐴) | |
| 3 | 2 | pssssd 4049 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ⊆ 𝐴) |
| 4 | 1, 3 | ssexd 5266 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ∈ V) |
| 5 | hashxrcl 14271 | . . 3 ⊢ (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐵) ∈ ℝ*) |
| 7 | hashxrcl 14271 | . . 3 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ*) | |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐴) ∈ ℝ*) |
| 9 | hashss 14323 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) | |
| 10 | 3, 9 | syldan 591 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) |
| 11 | 1 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 ∈ Fin) |
| 12 | 3 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ⊆ 𝐴) |
| 13 | 11, 12 | ssfid 9164 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ∈ Fin) |
| 14 | simpr 484 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → (♯‘𝐴) = (♯‘𝐵)) | |
| 15 | hashen 14261 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) | |
| 16 | 15 | biimpa 476 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 ≈ 𝐵) |
| 17 | 11, 13, 14, 16 | syl21anc 837 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 ≈ 𝐵) |
| 18 | 17 | ensymd 8938 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ≈ 𝐴) |
| 19 | fisseneq 9158 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≈ 𝐴) → 𝐵 = 𝐴) | |
| 20 | 11, 12, 18, 19 | syl3anc 1373 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 = 𝐴) |
| 21 | 2 | adantr 480 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ⊊ 𝐴) |
| 22 | 21 | pssned 4050 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ≠ 𝐴) |
| 23 | 22 | neneqd 2934 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → ¬ 𝐵 = 𝐴) |
| 24 | 20, 23 | pm2.65da 816 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → ¬ (♯‘𝐴) = (♯‘𝐵)) |
| 25 | 24 | neqned 2936 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐴) ≠ (♯‘𝐵)) |
| 26 | xrltlen 13051 | . . 3 ⊢ (((♯‘𝐵) ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) → ((♯‘𝐵) < (♯‘𝐴) ↔ ((♯‘𝐵) ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ (♯‘𝐵)))) | |
| 27 | 26 | biimpar 477 | . 2 ⊢ ((((♯‘𝐵) ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) ∧ ((♯‘𝐵) ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ (♯‘𝐵))) → (♯‘𝐵) < (♯‘𝐴)) |
| 28 | 6, 8, 10, 25, 27 | syl22anc 838 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐵) < (♯‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ⊆ wss 3898 ⊊ wpss 3899 class class class wbr 5095 ‘cfv 6489 ≈ cen 8876 Fincfn 8879 ℝ*cxr 11156 < clt 11157 ≤ cle 11158 ♯chash 14244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-oadd 8398 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-xnn0 12466 df-z 12480 df-uz 12743 df-fz 13415 df-hash 14245 |
| This theorem is referenced by: exsslsb 33681 |
| Copyright terms: Public domain | W3C validator |