| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hashpss | Structured version Visualization version GIF version | ||
| Description: The size of a proper subset is less than the size of its finite superset. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| hashpss | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐵) < (♯‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐴 ∈ Fin) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ⊊ 𝐴) | |
| 3 | 2 | pssssd 4045 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ⊆ 𝐴) |
| 4 | 1, 3 | ssexd 5257 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ∈ V) |
| 5 | hashxrcl 14259 | . . 3 ⊢ (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐵) ∈ ℝ*) |
| 7 | hashxrcl 14259 | . . 3 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ*) | |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐴) ∈ ℝ*) |
| 9 | hashss 14311 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) | |
| 10 | 3, 9 | syldan 591 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) |
| 11 | 1 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 ∈ Fin) |
| 12 | 3 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ⊆ 𝐴) |
| 13 | 11, 12 | ssfid 9148 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ∈ Fin) |
| 14 | simpr 484 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → (♯‘𝐴) = (♯‘𝐵)) | |
| 15 | hashen 14249 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) | |
| 16 | 15 | biimpa 476 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 ≈ 𝐵) |
| 17 | 11, 13, 14, 16 | syl21anc 837 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 ≈ 𝐵) |
| 18 | 17 | ensymd 8922 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ≈ 𝐴) |
| 19 | fisseneq 9142 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≈ 𝐴) → 𝐵 = 𝐴) | |
| 20 | 11, 12, 18, 19 | syl3anc 1373 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 = 𝐴) |
| 21 | 2 | adantr 480 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ⊊ 𝐴) |
| 22 | 21 | pssned 4046 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ≠ 𝐴) |
| 23 | 22 | neneqd 2933 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → ¬ 𝐵 = 𝐴) |
| 24 | 20, 23 | pm2.65da 816 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → ¬ (♯‘𝐴) = (♯‘𝐵)) |
| 25 | 24 | neqned 2935 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐴) ≠ (♯‘𝐵)) |
| 26 | xrltlen 13040 | . . 3 ⊢ (((♯‘𝐵) ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) → ((♯‘𝐵) < (♯‘𝐴) ↔ ((♯‘𝐵) ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ (♯‘𝐵)))) | |
| 27 | 26 | biimpar 477 | . 2 ⊢ ((((♯‘𝐵) ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) ∧ ((♯‘𝐵) ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ (♯‘𝐵))) → (♯‘𝐵) < (♯‘𝐴)) |
| 28 | 6, 8, 10, 25, 27 | syl22anc 838 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐵) < (♯‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ⊆ wss 3897 ⊊ wpss 3898 class class class wbr 5086 ‘cfv 6476 ≈ cen 8861 Fincfn 8864 ℝ*cxr 11140 < clt 11141 ≤ cle 11142 ♯chash 14232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-fz 13403 df-hash 14233 |
| This theorem is referenced by: exsslsb 33601 |
| Copyright terms: Public domain | W3C validator |