| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hashpss | Structured version Visualization version GIF version | ||
| Description: The size of a proper subset is less than the size of its finite superset. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| hashpss | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐵) < (♯‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐴 ∈ Fin) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ⊊ 𝐴) | |
| 3 | 2 | pssssd 4080 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ⊆ 𝐴) |
| 4 | 1, 3 | ssexd 5304 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ∈ V) |
| 5 | hashxrcl 14379 | . . 3 ⊢ (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐵) ∈ ℝ*) |
| 7 | hashxrcl 14379 | . . 3 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ*) | |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐴) ∈ ℝ*) |
| 9 | hashss 14431 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) | |
| 10 | 3, 9 | syldan 591 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) |
| 11 | 1 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 ∈ Fin) |
| 12 | 3 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ⊆ 𝐴) |
| 13 | 11, 12 | ssfid 9283 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ∈ Fin) |
| 14 | simpr 484 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → (♯‘𝐴) = (♯‘𝐵)) | |
| 15 | hashen 14369 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) | |
| 16 | 15 | biimpa 476 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 ≈ 𝐵) |
| 17 | 11, 13, 14, 16 | syl21anc 837 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 ≈ 𝐵) |
| 18 | 17 | ensymd 9027 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ≈ 𝐴) |
| 19 | fisseneq 9275 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≈ 𝐴) → 𝐵 = 𝐴) | |
| 20 | 11, 12, 18, 19 | syl3anc 1372 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 = 𝐴) |
| 21 | 2 | adantr 480 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ⊊ 𝐴) |
| 22 | 21 | pssned 4081 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ≠ 𝐴) |
| 23 | 22 | neneqd 2936 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → ¬ 𝐵 = 𝐴) |
| 24 | 20, 23 | pm2.65da 816 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → ¬ (♯‘𝐴) = (♯‘𝐵)) |
| 25 | 24 | neqned 2938 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐴) ≠ (♯‘𝐵)) |
| 26 | xrltlen 13170 | . . 3 ⊢ (((♯‘𝐵) ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) → ((♯‘𝐵) < (♯‘𝐴) ↔ ((♯‘𝐵) ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ (♯‘𝐵)))) | |
| 27 | 26 | biimpar 477 | . 2 ⊢ ((((♯‘𝐵) ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) ∧ ((♯‘𝐵) ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ (♯‘𝐵))) → (♯‘𝐵) < (♯‘𝐴)) |
| 28 | 6, 8, 10, 25, 27 | syl22anc 838 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐵) < (♯‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 Vcvv 3463 ⊆ wss 3931 ⊊ wpss 3932 class class class wbr 5123 ‘cfv 6541 ≈ cen 8964 Fincfn 8967 ℝ*cxr 11276 < clt 11277 ≤ cle 11278 ♯chash 14352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-oadd 8492 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13530 df-hash 14353 |
| This theorem is referenced by: exsslsb 33587 |
| Copyright terms: Public domain | W3C validator |