![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hashpss | Structured version Visualization version GIF version |
Description: The size of a proper subset is less than the size of its finite superset. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
Ref | Expression |
---|---|
hashpss | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐵) < (♯‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐴 ∈ Fin) | |
2 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ⊊ 𝐴) | |
3 | 2 | pssssd 4099 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ⊆ 𝐴) |
4 | 1, 3 | ssexd 5322 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ∈ V) |
5 | hashxrcl 14392 | . . 3 ⊢ (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐵) ∈ ℝ*) |
7 | hashxrcl 14392 | . . 3 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ*) | |
8 | 7 | adantr 480 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐴) ∈ ℝ*) |
9 | hashss 14444 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) | |
10 | 3, 9 | syldan 591 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) |
11 | 1 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 ∈ Fin) |
12 | 3 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ⊆ 𝐴) |
13 | 11, 12 | ssfid 9297 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ∈ Fin) |
14 | simpr 484 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → (♯‘𝐴) = (♯‘𝐵)) | |
15 | hashen 14382 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) | |
16 | 15 | biimpa 476 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 ≈ 𝐵) |
17 | 11, 13, 14, 16 | syl21anc 838 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 ≈ 𝐵) |
18 | 17 | ensymd 9041 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ≈ 𝐴) |
19 | fisseneq 9289 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≈ 𝐴) → 𝐵 = 𝐴) | |
20 | 11, 12, 18, 19 | syl3anc 1373 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 = 𝐴) |
21 | 2 | adantr 480 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ⊊ 𝐴) |
22 | 21 | pssned 4100 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐵 ≠ 𝐴) |
23 | 22 | neneqd 2944 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) ∧ (♯‘𝐴) = (♯‘𝐵)) → ¬ 𝐵 = 𝐴) |
24 | 20, 23 | pm2.65da 817 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → ¬ (♯‘𝐴) = (♯‘𝐵)) |
25 | 24 | neqned 2946 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐴) ≠ (♯‘𝐵)) |
26 | xrltlen 13184 | . . 3 ⊢ (((♯‘𝐵) ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) → ((♯‘𝐵) < (♯‘𝐴) ↔ ((♯‘𝐵) ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ (♯‘𝐵)))) | |
27 | 26 | biimpar 477 | . 2 ⊢ ((((♯‘𝐵) ∈ ℝ* ∧ (♯‘𝐴) ∈ ℝ*) ∧ ((♯‘𝐵) ≤ (♯‘𝐴) ∧ (♯‘𝐴) ≠ (♯‘𝐵))) → (♯‘𝐵) < (♯‘𝐴)) |
28 | 6, 8, 10, 25, 27 | syl22anc 839 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → (♯‘𝐵) < (♯‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2939 Vcvv 3479 ⊆ wss 3950 ⊊ wpss 3951 class class class wbr 5141 ‘cfv 6559 ≈ cen 8978 Fincfn 8981 ℝ*cxr 11290 < clt 11291 ≤ cle 11292 ♯chash 14365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-int 4945 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-1o 8502 df-oadd 8506 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-fin 8985 df-card 9975 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-nn 12263 df-n0 12523 df-xnn0 12596 df-z 12610 df-uz 12875 df-fz 13544 df-hash 14366 |
This theorem is referenced by: exsslsb 33634 |
Copyright terms: Public domain | W3C validator |