Step | Hyp | Ref
| Expression |
1 | | nfv 1914 |
. 2
⊢
Ⅎ𝑠𝜑 |
2 | | exsslsb.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LVec) |
3 | 2 | ad2antrr 726 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑊 ∈ LVec) |
4 | | simplr 769 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) |
5 | 4 | elin2d 4204 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ∈ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) |
6 | 5 | elin1d 4203 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ∈ 𝒫 𝑆) |
7 | 6 | elpwid 4607 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ⊆ 𝑆) |
8 | | exsslsb.1 |
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
9 | 8 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑆 ⊆ 𝐵) |
10 | 7, 9 | sstrd 3993 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ⊆ 𝐵) |
11 | | lveclmod 21097 |
. . . . . . 7
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
12 | | exsslsb.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑊) |
13 | | eqid 2736 |
. . . . . . . 8
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
14 | | exsslsb.k |
. . . . . . . 8
⊢ 𝐾 = (LSpan‘𝑊) |
15 | 12, 13, 14 | lspf 20964 |
. . . . . . 7
⊢ (𝑊 ∈ LMod → 𝐾:𝒫 𝐵⟶(LSubSp‘𝑊)) |
16 | 2, 11, 15 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → 𝐾:𝒫 𝐵⟶(LSubSp‘𝑊)) |
17 | 16 | ffnd 6735 |
. . . . 5
⊢ (𝜑 → 𝐾 Fn 𝒫 𝐵) |
18 | 17 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝐾 Fn 𝒫 𝐵) |
19 | 5 | elin2d 4204 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ∈ (◡𝐾 “ {𝐵})) |
20 | | fniniseg 7078 |
. . . . 5
⊢ (𝐾 Fn 𝒫 𝐵 → (𝑠 ∈ (◡𝐾 “ {𝐵}) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ (𝐾‘𝑠) = 𝐵))) |
21 | 20 | simplbda 499 |
. . . 4
⊢ ((𝐾 Fn 𝒫 𝐵 ∧ 𝑠 ∈ (◡𝐾 “ {𝐵})) → (𝐾‘𝑠) = 𝐵) |
22 | 18, 19, 21 | syl2anc 584 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → (𝐾‘𝑠) = 𝐵) |
23 | 2, 11 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ LMod) |
24 | 23 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑊 ∈ LMod) |
25 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑢 ⊊ 𝑠) |
26 | 25 | pssssd 4099 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑢 ⊆ 𝑠) |
27 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑠 ⊆ 𝑆) |
28 | 26, 27 | sstrd 3993 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑢 ⊆ 𝑆) |
29 | 9 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑆 ⊆ 𝐵) |
30 | 28, 29 | sstrd 3993 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑢 ⊆ 𝐵) |
31 | 12, 14 | lspssv 20973 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑢 ⊆ 𝐵) → (𝐾‘𝑢) ⊆ 𝐵) |
32 | 24, 30, 31 | syl2anc 584 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → (𝐾‘𝑢) ⊆ 𝐵) |
33 | | hashf 14373 |
. . . . . . . . . . . 12
⊢
♯:V⟶(ℕ0 ∪ {+∞}) |
34 | | ffun 6737 |
. . . . . . . . . . . 12
⊢
(♯:V⟶(ℕ0 ∪ {+∞}) → Fun
♯) |
35 | 33, 34 | mp1i 13 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun
♯) |
36 | | exsslsb.s |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑆 ∈ Fin) |
37 | | pwssfi 9213 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 ∈ Fin → (𝑆 ∈ Fin ↔ 𝒫
𝑆 ⊆
Fin)) |
38 | 37 | ibi 267 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ∈ Fin → 𝒫
𝑆 ⊆
Fin) |
39 | 36, 38 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝒫 𝑆 ⊆ Fin) |
40 | 39 | ssinss1d 4246 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})) ⊆ Fin) |
41 | 40 | sselda 3982 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) → 𝑠 ∈ Fin) |
42 | | hashcl 14391 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ Fin →
(♯‘𝑠) ∈
ℕ0) |
43 | 41, 42 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) → (♯‘𝑠) ∈
ℕ0) |
44 | | nn0uz 12916 |
. . . . . . . . . . . 12
⊢
ℕ0 = (ℤ≥‘0) |
45 | 43, 44 | eleqtrdi 2850 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) → (♯‘𝑠) ∈
(ℤ≥‘0)) |
46 | 1, 35, 45 | funimassd 6973 |
. . . . . . . . . 10
⊢ (𝜑 → (♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) ⊆
(ℤ≥‘0)) |
47 | 46 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → (♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) ⊆
(ℤ≥‘0)) |
48 | 33 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
♯:V⟶(ℕ0 ∪ {+∞})) |
49 | 48 | ffnd 6735 |
. . . . . . . . . . . 12
⊢ (𝜑 → ♯ Fn
V) |
50 | 49 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → ♯ Fn V) |
51 | 50 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → ♯ Fn V) |
52 | | vex 3483 |
. . . . . . . . . . 11
⊢ 𝑢 ∈ V |
53 | 52 | a1i 11 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑢 ∈ V) |
54 | 36 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑆 ∈ Fin) |
55 | 54, 28 | sselpwd 5326 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑢 ∈ 𝒫 𝑆) |
56 | 55 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑢 ∈ 𝒫 𝑆) |
57 | 18 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝐾 Fn 𝒫 𝐵) |
58 | 12 | fvexi 6918 |
. . . . . . . . . . . . . . 15
⊢ 𝐵 ∈ V |
59 | 58 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝐵 ∈ V) |
60 | 59, 30 | sselpwd 5326 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑢 ∈ 𝒫 𝐵) |
61 | 60 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑢 ∈ 𝒫 𝐵) |
62 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (𝐾‘𝑢) = 𝐵) |
63 | | fvex 6917 |
. . . . . . . . . . . . . 14
⊢ (𝐾‘𝑢) ∈ V |
64 | 63 | elsn 4639 |
. . . . . . . . . . . . 13
⊢ ((𝐾‘𝑢) ∈ {𝐵} ↔ (𝐾‘𝑢) = 𝐵) |
65 | 62, 64 | sylibr 234 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (𝐾‘𝑢) ∈ {𝐵}) |
66 | 57, 61, 65 | elpreimad 7077 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑢 ∈ (◡𝐾 “ {𝐵})) |
67 | 56, 66 | elind 4199 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑢 ∈ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) |
68 | 51, 53, 67 | fnfvimad 7252 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (♯‘𝑢) ∈ (♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) |
69 | | infssuzle 12969 |
. . . . . . . . 9
⊢
(((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) ⊆
(ℤ≥‘0) ∧ (♯‘𝑢) ∈ (♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) → inf((♯ “ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < ) ≤
(♯‘𝑢)) |
70 | 47, 68, 69 | syl2an2r 685 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → inf((♯ “ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < ) ≤
(♯‘𝑢)) |
71 | 54, 27 | ssfid 9297 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑠 ∈ Fin) |
72 | 71 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑠 ∈ Fin) |
73 | | simplr 769 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑢 ⊊ 𝑠) |
74 | | hashpss 32801 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ Fin ∧ 𝑢 ⊊ 𝑠) → (♯‘𝑢) < (♯‘𝑠)) |
75 | 72, 73, 74 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (♯‘𝑢) < (♯‘𝑠)) |
76 | | simpllr 776 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) |
77 | 75, 76 | breqtrd 5167 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (♯‘𝑢) < inf((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) |
78 | 26 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑢 ⊆ 𝑠) |
79 | 72, 78 | ssfid 9297 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑢 ∈ Fin) |
80 | | hashcl 14391 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ Fin →
(♯‘𝑢) ∈
ℕ0) |
81 | 79, 80 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (♯‘𝑢) ∈
ℕ0) |
82 | 81 | nn0red 12584 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (♯‘𝑢) ∈ ℝ) |
83 | 72, 42 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (♯‘𝑠) ∈
ℕ0) |
84 | 83 | nn0red 12584 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (♯‘𝑠) ∈ ℝ) |
85 | 76, 84 | eqeltrrd 2841 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → inf((♯ “ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < ) ∈
ℝ) |
86 | 82, 85 | ltnled 11404 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → ((♯‘𝑢) < inf((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < ) ↔ ¬
inf((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < ) ≤
(♯‘𝑢))) |
87 | 77, 86 | mpbid 232 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → ¬ inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < ) ≤
(♯‘𝑢)) |
88 | 70, 87 | pm2.65da 817 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → ¬ (𝐾‘𝑢) = 𝐵) |
89 | 88 | neqned 2946 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → (𝐾‘𝑢) ≠ 𝐵) |
90 | | df-pss 3970 |
. . . . . 6
⊢ ((𝐾‘𝑢) ⊊ 𝐵 ↔ ((𝐾‘𝑢) ⊆ 𝐵 ∧ (𝐾‘𝑢) ≠ 𝐵)) |
91 | 32, 89, 90 | sylanbrc 583 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → (𝐾‘𝑢) ⊊ 𝐵) |
92 | 91 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → (𝑢 ⊊ 𝑠 → (𝐾‘𝑢) ⊊ 𝐵)) |
93 | 92 | alrimiv 1927 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → ∀𝑢(𝑢 ⊊ 𝑠 → (𝐾‘𝑢) ⊊ 𝐵)) |
94 | | exsslsb.j |
. . . . 5
⊢ 𝐽 = (LBasis‘𝑊) |
95 | 12, 94, 14 | islbs3 21149 |
. . . 4
⊢ (𝑊 ∈ LVec → (𝑠 ∈ 𝐽 ↔ (𝑠 ⊆ 𝐵 ∧ (𝐾‘𝑠) = 𝐵 ∧ ∀𝑢(𝑢 ⊊ 𝑠 → (𝐾‘𝑢) ⊊ 𝐵)))) |
96 | 95 | biimpar 477 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ (𝑠 ⊆ 𝐵 ∧ (𝐾‘𝑠) = 𝐵 ∧ ∀𝑢(𝑢 ⊊ 𝑠 → (𝐾‘𝑢) ⊊ 𝐵))) → 𝑠 ∈ 𝐽) |
97 | 3, 10, 22, 93, 96 | syl13anc 1374 |
. 2
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ∈ 𝐽) |
98 | 36 | elexd 3503 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ V) |
99 | | pwidg 4618 |
. . . . . . . 8
⊢ (𝑆 ∈ Fin → 𝑆 ∈ 𝒫 𝑆) |
100 | 36, 99 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ 𝒫 𝑆) |
101 | 36, 8 | elpwd 4604 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
102 | | exsslsb.2 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾‘𝑆) = 𝐵) |
103 | | fvex 6917 |
. . . . . . . . . 10
⊢ (𝐾‘𝑆) ∈ V |
104 | 103 | elsn 4639 |
. . . . . . . . 9
⊢ ((𝐾‘𝑆) ∈ {𝐵} ↔ (𝐾‘𝑆) = 𝐵) |
105 | 102, 104 | sylibr 234 |
. . . . . . . 8
⊢ (𝜑 → (𝐾‘𝑆) ∈ {𝐵}) |
106 | 17, 101, 105 | elpreimad 7077 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ (◡𝐾 “ {𝐵})) |
107 | 100, 106 | elind 4199 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) |
108 | 49, 98, 107 | fnfvimad 7252 |
. . . . 5
⊢ (𝜑 → (♯‘𝑆) ∈ (♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) |
109 | 108 | ne0d 4341 |
. . . 4
⊢ (𝜑 → (♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) ≠ ∅) |
110 | | infssuzcl 12970 |
. . . 4
⊢
(((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) ⊆
(ℤ≥‘0) ∧ (♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) ≠ ∅) → inf((♯
“ (𝒫 𝑆 ∩
(◡𝐾 “ {𝐵}))), ℝ, < ) ∈ (♯
“ (𝒫 𝑆 ∩
(◡𝐾 “ {𝐵})))) |
111 | 46, 109, 110 | syl2anc 584 |
. . 3
⊢ (𝜑 → inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < ) ∈ (♯
“ (𝒫 𝑆 ∩
(◡𝐾 “ {𝐵})))) |
112 | | fvelima2 6959 |
. . 3
⊢ ((♯
Fn V ∧ inf((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < ) ∈ (♯
“ (𝒫 𝑆 ∩
(◡𝐾 “ {𝐵})))) → ∃𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))(♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) |
113 | 49, 111, 112 | syl2anc 584 |
. 2
⊢ (𝜑 → ∃𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))(♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) |
114 | 1, 97, 7, 113 | reximd2a 3268 |
1
⊢ (𝜑 → ∃𝑠 ∈ 𝐽 𝑠 ⊆ 𝑆) |