| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1913 |
. 2
⊢
Ⅎ𝑠𝜑 |
| 2 | | exsslsb.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LVec) |
| 3 | 2 | ad2antrr 726 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑊 ∈ LVec) |
| 4 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) |
| 5 | 4 | elin2d 4185 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ∈ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) |
| 6 | 5 | elin1d 4184 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ∈ 𝒫 𝑆) |
| 7 | 6 | elpwid 4589 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ⊆ 𝑆) |
| 8 | | exsslsb.1 |
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 9 | 8 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑆 ⊆ 𝐵) |
| 10 | 7, 9 | sstrd 3974 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ⊆ 𝐵) |
| 11 | | lveclmod 21074 |
. . . . . . 7
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
| 12 | | exsslsb.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑊) |
| 13 | | eqid 2734 |
. . . . . . . 8
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
| 14 | | exsslsb.k |
. . . . . . . 8
⊢ 𝐾 = (LSpan‘𝑊) |
| 15 | 12, 13, 14 | lspf 20941 |
. . . . . . 7
⊢ (𝑊 ∈ LMod → 𝐾:𝒫 𝐵⟶(LSubSp‘𝑊)) |
| 16 | 2, 11, 15 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → 𝐾:𝒫 𝐵⟶(LSubSp‘𝑊)) |
| 17 | 16 | ffnd 6717 |
. . . . 5
⊢ (𝜑 → 𝐾 Fn 𝒫 𝐵) |
| 18 | 17 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝐾 Fn 𝒫 𝐵) |
| 19 | 5 | elin2d 4185 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ∈ (◡𝐾 “ {𝐵})) |
| 20 | | fniniseg 7060 |
. . . . 5
⊢ (𝐾 Fn 𝒫 𝐵 → (𝑠 ∈ (◡𝐾 “ {𝐵}) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ (𝐾‘𝑠) = 𝐵))) |
| 21 | 20 | simplbda 499 |
. . . 4
⊢ ((𝐾 Fn 𝒫 𝐵 ∧ 𝑠 ∈ (◡𝐾 “ {𝐵})) → (𝐾‘𝑠) = 𝐵) |
| 22 | 18, 19, 21 | syl2anc 584 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → (𝐾‘𝑠) = 𝐵) |
| 23 | 2, 11 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ LMod) |
| 24 | 23 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑊 ∈ LMod) |
| 25 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑢 ⊊ 𝑠) |
| 26 | 25 | pssssd 4080 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑢 ⊆ 𝑠) |
| 27 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑠 ⊆ 𝑆) |
| 28 | 26, 27 | sstrd 3974 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑢 ⊆ 𝑆) |
| 29 | 9 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑆 ⊆ 𝐵) |
| 30 | 28, 29 | sstrd 3974 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑢 ⊆ 𝐵) |
| 31 | 12, 14 | lspssv 20950 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑢 ⊆ 𝐵) → (𝐾‘𝑢) ⊆ 𝐵) |
| 32 | 24, 30, 31 | syl2anc 584 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → (𝐾‘𝑢) ⊆ 𝐵) |
| 33 | | hashf 14360 |
. . . . . . . . . . . 12
⊢
♯:V⟶(ℕ0 ∪ {+∞}) |
| 34 | | ffun 6719 |
. . . . . . . . . . . 12
⊢
(♯:V⟶(ℕ0 ∪ {+∞}) → Fun
♯) |
| 35 | 33, 34 | mp1i 13 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun
♯) |
| 36 | | exsslsb.s |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑆 ∈ Fin) |
| 37 | | pwssfi 9199 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 ∈ Fin → (𝑆 ∈ Fin ↔ 𝒫
𝑆 ⊆
Fin)) |
| 38 | 37 | ibi 267 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ∈ Fin → 𝒫
𝑆 ⊆
Fin) |
| 39 | 36, 38 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝒫 𝑆 ⊆ Fin) |
| 40 | 39 | ssinss1d 4227 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})) ⊆ Fin) |
| 41 | 40 | sselda 3963 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) → 𝑠 ∈ Fin) |
| 42 | | hashcl 14378 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ Fin →
(♯‘𝑠) ∈
ℕ0) |
| 43 | 41, 42 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) → (♯‘𝑠) ∈
ℕ0) |
| 44 | | nn0uz 12902 |
. . . . . . . . . . . 12
⊢
ℕ0 = (ℤ≥‘0) |
| 45 | 43, 44 | eleqtrdi 2843 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) → (♯‘𝑠) ∈
(ℤ≥‘0)) |
| 46 | 1, 35, 45 | funimassd 6955 |
. . . . . . . . . 10
⊢ (𝜑 → (♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) ⊆
(ℤ≥‘0)) |
| 47 | 46 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → (♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) ⊆
(ℤ≥‘0)) |
| 48 | 33 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
♯:V⟶(ℕ0 ∪ {+∞})) |
| 49 | 48 | ffnd 6717 |
. . . . . . . . . . . 12
⊢ (𝜑 → ♯ Fn
V) |
| 50 | 49 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → ♯ Fn V) |
| 51 | 50 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → ♯ Fn V) |
| 52 | | vex 3467 |
. . . . . . . . . . 11
⊢ 𝑢 ∈ V |
| 53 | 52 | a1i 11 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑢 ∈ V) |
| 54 | 36 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑆 ∈ Fin) |
| 55 | 54, 28 | sselpwd 5308 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑢 ∈ 𝒫 𝑆) |
| 56 | 55 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑢 ∈ 𝒫 𝑆) |
| 57 | 18 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝐾 Fn 𝒫 𝐵) |
| 58 | 12 | fvexi 6900 |
. . . . . . . . . . . . . . 15
⊢ 𝐵 ∈ V |
| 59 | 58 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝐵 ∈ V) |
| 60 | 59, 30 | sselpwd 5308 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑢 ∈ 𝒫 𝐵) |
| 61 | 60 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑢 ∈ 𝒫 𝐵) |
| 62 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (𝐾‘𝑢) = 𝐵) |
| 63 | | fvex 6899 |
. . . . . . . . . . . . . 14
⊢ (𝐾‘𝑢) ∈ V |
| 64 | 63 | elsn 4621 |
. . . . . . . . . . . . 13
⊢ ((𝐾‘𝑢) ∈ {𝐵} ↔ (𝐾‘𝑢) = 𝐵) |
| 65 | 62, 64 | sylibr 234 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (𝐾‘𝑢) ∈ {𝐵}) |
| 66 | 57, 61, 65 | elpreimad 7059 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑢 ∈ (◡𝐾 “ {𝐵})) |
| 67 | 56, 66 | elind 4180 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑢 ∈ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) |
| 68 | 51, 53, 67 | fnfvimad 7236 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (♯‘𝑢) ∈ (♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) |
| 69 | | infssuzle 12955 |
. . . . . . . . 9
⊢
(((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) ⊆
(ℤ≥‘0) ∧ (♯‘𝑢) ∈ (♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) → inf((♯ “ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < ) ≤
(♯‘𝑢)) |
| 70 | 47, 68, 69 | syl2an2r 685 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → inf((♯ “ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < ) ≤
(♯‘𝑢)) |
| 71 | 54, 27 | ssfid 9283 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → 𝑠 ∈ Fin) |
| 72 | 71 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑠 ∈ Fin) |
| 73 | | simplr 768 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑢 ⊊ 𝑠) |
| 74 | | hashpss 32757 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ Fin ∧ 𝑢 ⊊ 𝑠) → (♯‘𝑢) < (♯‘𝑠)) |
| 75 | 72, 73, 74 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (♯‘𝑢) < (♯‘𝑠)) |
| 76 | | simpllr 775 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) |
| 77 | 75, 76 | breqtrd 5149 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (♯‘𝑢) < inf((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) |
| 78 | 26 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑢 ⊆ 𝑠) |
| 79 | 72, 78 | ssfid 9283 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → 𝑢 ∈ Fin) |
| 80 | | hashcl 14378 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ Fin →
(♯‘𝑢) ∈
ℕ0) |
| 81 | 79, 80 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (♯‘𝑢) ∈
ℕ0) |
| 82 | 81 | nn0red 12571 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (♯‘𝑢) ∈ ℝ) |
| 83 | 72, 42 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (♯‘𝑠) ∈
ℕ0) |
| 84 | 83 | nn0red 12571 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → (♯‘𝑠) ∈ ℝ) |
| 85 | 76, 84 | eqeltrrd 2834 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → inf((♯ “ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < ) ∈
ℝ) |
| 86 | 82, 85 | ltnled 11390 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → ((♯‘𝑢) < inf((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < ) ↔ ¬
inf((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < ) ≤
(♯‘𝑢))) |
| 87 | 77, 86 | mpbid 232 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫
𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) ∧ (𝐾‘𝑢) = 𝐵) → ¬ inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < ) ≤
(♯‘𝑢)) |
| 88 | 70, 87 | pm2.65da 816 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → ¬ (𝐾‘𝑢) = 𝐵) |
| 89 | 88 | neqned 2938 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → (𝐾‘𝑢) ≠ 𝐵) |
| 90 | | df-pss 3951 |
. . . . . 6
⊢ ((𝐾‘𝑢) ⊊ 𝐵 ↔ ((𝐾‘𝑢) ⊆ 𝐵 ∧ (𝐾‘𝑢) ≠ 𝐵)) |
| 91 | 32, 89, 90 | sylanbrc 583 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢 ⊊ 𝑠) → (𝐾‘𝑢) ⊊ 𝐵) |
| 92 | 91 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → (𝑢 ⊊ 𝑠 → (𝐾‘𝑢) ⊊ 𝐵)) |
| 93 | 92 | alrimiv 1926 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → ∀𝑢(𝑢 ⊊ 𝑠 → (𝐾‘𝑢) ⊊ 𝐵)) |
| 94 | | exsslsb.j |
. . . . 5
⊢ 𝐽 = (LBasis‘𝑊) |
| 95 | 12, 94, 14 | islbs3 21126 |
. . . 4
⊢ (𝑊 ∈ LVec → (𝑠 ∈ 𝐽 ↔ (𝑠 ⊆ 𝐵 ∧ (𝐾‘𝑠) = 𝐵 ∧ ∀𝑢(𝑢 ⊊ 𝑠 → (𝐾‘𝑢) ⊊ 𝐵)))) |
| 96 | 95 | biimpar 477 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ (𝑠 ⊆ 𝐵 ∧ (𝐾‘𝑠) = 𝐵 ∧ ∀𝑢(𝑢 ⊊ 𝑠 → (𝐾‘𝑢) ⊊ 𝐵))) → 𝑠 ∈ 𝐽) |
| 97 | 3, 10, 22, 93, 96 | syl13anc 1373 |
. 2
⊢ (((𝜑 ∧ 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ∈ 𝐽) |
| 98 | 36 | elexd 3487 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ V) |
| 99 | | pwidg 4600 |
. . . . . . . 8
⊢ (𝑆 ∈ Fin → 𝑆 ∈ 𝒫 𝑆) |
| 100 | 36, 99 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ 𝒫 𝑆) |
| 101 | 36, 8 | elpwd 4586 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
| 102 | | exsslsb.2 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾‘𝑆) = 𝐵) |
| 103 | | fvex 6899 |
. . . . . . . . . 10
⊢ (𝐾‘𝑆) ∈ V |
| 104 | 103 | elsn 4621 |
. . . . . . . . 9
⊢ ((𝐾‘𝑆) ∈ {𝐵} ↔ (𝐾‘𝑆) = 𝐵) |
| 105 | 102, 104 | sylibr 234 |
. . . . . . . 8
⊢ (𝜑 → (𝐾‘𝑆) ∈ {𝐵}) |
| 106 | 17, 101, 105 | elpreimad 7059 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ (◡𝐾 “ {𝐵})) |
| 107 | 100, 106 | elind 4180 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) |
| 108 | 49, 98, 107 | fnfvimad 7236 |
. . . . 5
⊢ (𝜑 → (♯‘𝑆) ∈ (♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))) |
| 109 | 108 | ne0d 4322 |
. . . 4
⊢ (𝜑 → (♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) ≠ ∅) |
| 110 | | infssuzcl 12956 |
. . . 4
⊢
(((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) ⊆
(ℤ≥‘0) ∧ (♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))) ≠ ∅) → inf((♯
“ (𝒫 𝑆 ∩
(◡𝐾 “ {𝐵}))), ℝ, < ) ∈ (♯
“ (𝒫 𝑆 ∩
(◡𝐾 “ {𝐵})))) |
| 111 | 46, 109, 110 | syl2anc 584 |
. . 3
⊢ (𝜑 → inf((♯ “
(𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < ) ∈ (♯
“ (𝒫 𝑆 ∩
(◡𝐾 “ {𝐵})))) |
| 112 | | fvelima2 6941 |
. . 3
⊢ ((♯
Fn V ∧ inf((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < ) ∈ (♯
“ (𝒫 𝑆 ∩
(◡𝐾 “ {𝐵})))) → ∃𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))(♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) |
| 113 | 49, 111, 112 | syl2anc 584 |
. 2
⊢ (𝜑 → ∃𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵})))(♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (◡𝐾 “ {𝐵}))), ℝ, < )) |
| 114 | 1, 97, 7, 113 | reximd2a 3255 |
1
⊢ (𝜑 → ∃𝑠 ∈ 𝐽 𝑠 ⊆ 𝑆) |