Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exsslsb Structured version   Visualization version   GIF version

Theorem exsslsb 33598
Description: Any finite generating set 𝑆 of a vector space 𝑊 contains a basis. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
exsslsb.b 𝐵 = (Base‘𝑊)
exsslsb.j 𝐽 = (LBasis‘𝑊)
exsslsb.k 𝐾 = (LSpan‘𝑊)
exsslsb.w (𝜑𝑊 ∈ LVec)
exsslsb.s (𝜑𝑆 ∈ Fin)
exsslsb.1 (𝜑𝑆𝐵)
exsslsb.2 (𝜑 → (𝐾𝑆) = 𝐵)
Assertion
Ref Expression
exsslsb (𝜑 → ∃𝑠𝐽 𝑠𝑆)
Distinct variable groups:   𝐵,𝑠   𝐽,𝑠   𝐾,𝑠   𝑆,𝑠   𝜑,𝑠
Allowed substitution hint:   𝑊(𝑠)

Proof of Theorem exsslsb
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . 2 𝑠𝜑
2 exsslsb.w . . . 4 (𝜑𝑊 ∈ LVec)
32ad2antrr 726 . . 3 (((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) → 𝑊 ∈ LVec)
4 simplr 768 . . . . . . 7 (((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))))
54elin2d 4170 . . . . . 6 (((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ∈ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))
65elin1d 4169 . . . . 5 (((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ∈ 𝒫 𝑆)
76elpwid 4574 . . . 4 (((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) → 𝑠𝑆)
8 exsslsb.1 . . . . 5 (𝜑𝑆𝐵)
98ad2antrr 726 . . . 4 (((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) → 𝑆𝐵)
107, 9sstrd 3959 . . 3 (((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) → 𝑠𝐵)
11 lveclmod 21019 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
12 exsslsb.b . . . . . . . 8 𝐵 = (Base‘𝑊)
13 eqid 2730 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
14 exsslsb.k . . . . . . . 8 𝐾 = (LSpan‘𝑊)
1512, 13, 14lspf 20886 . . . . . . 7 (𝑊 ∈ LMod → 𝐾:𝒫 𝐵⟶(LSubSp‘𝑊))
162, 11, 153syl 18 . . . . . 6 (𝜑𝐾:𝒫 𝐵⟶(LSubSp‘𝑊))
1716ffnd 6691 . . . . 5 (𝜑𝐾 Fn 𝒫 𝐵)
1817ad2antrr 726 . . . 4 (((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) → 𝐾 Fn 𝒫 𝐵)
195elin2d 4170 . . . 4 (((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) → 𝑠 ∈ (𝐾 “ {𝐵}))
20 fniniseg 7034 . . . . 5 (𝐾 Fn 𝒫 𝐵 → (𝑠 ∈ (𝐾 “ {𝐵}) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ (𝐾𝑠) = 𝐵)))
2120simplbda 499 . . . 4 ((𝐾 Fn 𝒫 𝐵𝑠 ∈ (𝐾 “ {𝐵})) → (𝐾𝑠) = 𝐵)
2218, 19, 21syl2anc 584 . . 3 (((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) → (𝐾𝑠) = 𝐵)
232, 11syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
2423ad3antrrr 730 . . . . . . 7 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → 𝑊 ∈ LMod)
25 simpr 484 . . . . . . . . . 10 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → 𝑢𝑠)
2625pssssd 4065 . . . . . . . . 9 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → 𝑢𝑠)
277adantr 480 . . . . . . . . 9 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → 𝑠𝑆)
2826, 27sstrd 3959 . . . . . . . 8 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → 𝑢𝑆)
299adantr 480 . . . . . . . 8 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → 𝑆𝐵)
3028, 29sstrd 3959 . . . . . . 7 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → 𝑢𝐵)
3112, 14lspssv 20895 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑢𝐵) → (𝐾𝑢) ⊆ 𝐵)
3224, 30, 31syl2anc 584 . . . . . 6 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → (𝐾𝑢) ⊆ 𝐵)
33 hashf 14309 . . . . . . . . . . . 12 ♯:V⟶(ℕ0 ∪ {+∞})
34 ffun 6693 . . . . . . . . . . . 12 (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯)
3533, 34mp1i 13 . . . . . . . . . . 11 (𝜑 → Fun ♯)
36 exsslsb.s . . . . . . . . . . . . . . . 16 (𝜑𝑆 ∈ Fin)
37 pwssfi 9146 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ Fin → (𝑆 ∈ Fin ↔ 𝒫 𝑆 ⊆ Fin))
3837ibi 267 . . . . . . . . . . . . . . . 16 (𝑆 ∈ Fin → 𝒫 𝑆 ⊆ Fin)
3936, 38syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 𝒫 𝑆 ⊆ Fin)
4039ssinss1d 4212 . . . . . . . . . . . . . 14 (𝜑 → (𝒫 𝑆 ∩ (𝐾 “ {𝐵})) ⊆ Fin)
4140sselda 3948 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))) → 𝑠 ∈ Fin)
42 hashcl 14327 . . . . . . . . . . . . 13 (𝑠 ∈ Fin → (♯‘𝑠) ∈ ℕ0)
4341, 42syl 17 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))) → (♯‘𝑠) ∈ ℕ0)
44 nn0uz 12841 . . . . . . . . . . . 12 0 = (ℤ‘0)
4543, 44eleqtrdi 2839 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))) → (♯‘𝑠) ∈ (ℤ‘0))
461, 35, 45funimassd 6929 . . . . . . . . . 10 (𝜑 → (♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))) ⊆ (ℤ‘0))
4746ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → (♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))) ⊆ (ℤ‘0))
4833a1i 11 . . . . . . . . . . . . 13 (𝜑 → ♯:V⟶(ℕ0 ∪ {+∞}))
4948ffnd 6691 . . . . . . . . . . . 12 (𝜑 → ♯ Fn V)
5049ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → ♯ Fn V)
5150adantr 480 . . . . . . . . . 10 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → ♯ Fn V)
52 vex 3454 . . . . . . . . . . 11 𝑢 ∈ V
5352a1i 11 . . . . . . . . . 10 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → 𝑢 ∈ V)
5436ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → 𝑆 ∈ Fin)
5554, 28sselpwd 5285 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → 𝑢 ∈ 𝒫 𝑆)
5655adantr 480 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → 𝑢 ∈ 𝒫 𝑆)
5718ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → 𝐾 Fn 𝒫 𝐵)
5812fvexi 6874 . . . . . . . . . . . . . . 15 𝐵 ∈ V
5958a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → 𝐵 ∈ V)
6059, 30sselpwd 5285 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → 𝑢 ∈ 𝒫 𝐵)
6160adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → 𝑢 ∈ 𝒫 𝐵)
62 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → (𝐾𝑢) = 𝐵)
63 fvex 6873 . . . . . . . . . . . . . 14 (𝐾𝑢) ∈ V
6463elsn 4606 . . . . . . . . . . . . 13 ((𝐾𝑢) ∈ {𝐵} ↔ (𝐾𝑢) = 𝐵)
6562, 64sylibr 234 . . . . . . . . . . . 12 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → (𝐾𝑢) ∈ {𝐵})
6657, 61, 65elpreimad 7033 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → 𝑢 ∈ (𝐾 “ {𝐵}))
6756, 66elind 4165 . . . . . . . . . 10 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → 𝑢 ∈ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))
6851, 53, 67fnfvimad 7210 . . . . . . . . 9 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → (♯‘𝑢) ∈ (♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))))
69 infssuzle 12896 . . . . . . . . 9 (((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))) ⊆ (ℤ‘0) ∧ (♯‘𝑢) ∈ (♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) → inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < ) ≤ (♯‘𝑢))
7047, 68, 69syl2an2r 685 . . . . . . . 8 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < ) ≤ (♯‘𝑢))
7154, 27ssfid 9218 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → 𝑠 ∈ Fin)
7271adantr 480 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → 𝑠 ∈ Fin)
73 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → 𝑢𝑠)
74 hashpss 32740 . . . . . . . . . . 11 ((𝑠 ∈ Fin ∧ 𝑢𝑠) → (♯‘𝑢) < (♯‘𝑠))
7572, 73, 74syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → (♯‘𝑢) < (♯‘𝑠))
76 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < ))
7775, 76breqtrd 5135 . . . . . . . . 9 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → (♯‘𝑢) < inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < ))
7826adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → 𝑢𝑠)
7972, 78ssfid 9218 . . . . . . . . . . . 12 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → 𝑢 ∈ Fin)
80 hashcl 14327 . . . . . . . . . . . 12 (𝑢 ∈ Fin → (♯‘𝑢) ∈ ℕ0)
8179, 80syl 17 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → (♯‘𝑢) ∈ ℕ0)
8281nn0red 12510 . . . . . . . . . 10 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → (♯‘𝑢) ∈ ℝ)
8372, 42syl 17 . . . . . . . . . . . 12 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → (♯‘𝑠) ∈ ℕ0)
8483nn0red 12510 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → (♯‘𝑠) ∈ ℝ)
8576, 84eqeltrrd 2830 . . . . . . . . . 10 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < ) ∈ ℝ)
8682, 85ltnled 11327 . . . . . . . . 9 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → ((♯‘𝑢) < inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < ) ↔ ¬ inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < ) ≤ (♯‘𝑢)))
8777, 86mpbid 232 . . . . . . . 8 (((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) ∧ (𝐾𝑢) = 𝐵) → ¬ inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < ) ≤ (♯‘𝑢))
8870, 87pm2.65da 816 . . . . . . 7 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → ¬ (𝐾𝑢) = 𝐵)
8988neqned 2933 . . . . . 6 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → (𝐾𝑢) ≠ 𝐵)
90 df-pss 3936 . . . . . 6 ((𝐾𝑢) ⊊ 𝐵 ↔ ((𝐾𝑢) ⊆ 𝐵 ∧ (𝐾𝑢) ≠ 𝐵))
9132, 89, 90sylanbrc 583 . . . . 5 ((((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) ∧ 𝑢𝑠) → (𝐾𝑢) ⊊ 𝐵)
9291ex 412 . . . 4 (((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) → (𝑢𝑠 → (𝐾𝑢) ⊊ 𝐵))
9392alrimiv 1927 . . 3 (((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) → ∀𝑢(𝑢𝑠 → (𝐾𝑢) ⊊ 𝐵))
94 exsslsb.j . . . . 5 𝐽 = (LBasis‘𝑊)
9512, 94, 14islbs3 21071 . . . 4 (𝑊 ∈ LVec → (𝑠𝐽 ↔ (𝑠𝐵 ∧ (𝐾𝑠) = 𝐵 ∧ ∀𝑢(𝑢𝑠 → (𝐾𝑢) ⊊ 𝐵))))
9695biimpar 477 . . 3 ((𝑊 ∈ LVec ∧ (𝑠𝐵 ∧ (𝐾𝑠) = 𝐵 ∧ ∀𝑢(𝑢𝑠 → (𝐾𝑢) ⊊ 𝐵))) → 𝑠𝐽)
973, 10, 22, 93, 96syl13anc 1374 . 2 (((𝜑𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) ∧ (♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < )) → 𝑠𝐽)
9836elexd 3474 . . . . . 6 (𝜑𝑆 ∈ V)
99 pwidg 4585 . . . . . . . 8 (𝑆 ∈ Fin → 𝑆 ∈ 𝒫 𝑆)
10036, 99syl 17 . . . . . . 7 (𝜑𝑆 ∈ 𝒫 𝑆)
10136, 8elpwd 4571 . . . . . . . 8 (𝜑𝑆 ∈ 𝒫 𝐵)
102 exsslsb.2 . . . . . . . . 9 (𝜑 → (𝐾𝑆) = 𝐵)
103 fvex 6873 . . . . . . . . . 10 (𝐾𝑆) ∈ V
104103elsn 4606 . . . . . . . . 9 ((𝐾𝑆) ∈ {𝐵} ↔ (𝐾𝑆) = 𝐵)
105102, 104sylibr 234 . . . . . . . 8 (𝜑 → (𝐾𝑆) ∈ {𝐵})
10617, 101, 105elpreimad 7033 . . . . . . 7 (𝜑𝑆 ∈ (𝐾 “ {𝐵}))
107100, 106elind 4165 . . . . . 6 (𝜑𝑆 ∈ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))
10849, 98, 107fnfvimad 7210 . . . . 5 (𝜑 → (♯‘𝑆) ∈ (♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))))
109108ne0d 4307 . . . 4 (𝜑 → (♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))) ≠ ∅)
110 infssuzcl 12897 . . . 4 (((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))) ⊆ (ℤ‘0) ∧ (♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))) ≠ ∅) → inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < ) ∈ (♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))))
11146, 109, 110syl2anc 584 . . 3 (𝜑 → inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < ) ∈ (♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))))
112 fvelima2 6915 . . 3 ((♯ Fn V ∧ inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < ) ∈ (♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))) → ∃𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))(♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < ))
11349, 111, 112syl2anc 584 . 2 (𝜑 → ∃𝑠 ∈ (V ∩ (𝒫 𝑆 ∩ (𝐾 “ {𝐵})))(♯‘𝑠) = inf((♯ “ (𝒫 𝑆 ∩ (𝐾 “ {𝐵}))), ℝ, < ))
1141, 97, 7, 113reximd2a 3248 1 (𝜑 → ∃𝑠𝐽 𝑠𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  cun 3914  cin 3915  wss 3916  wpss 3917  c0 4298  𝒫 cpw 4565  {csn 4591   class class class wbr 5109  ccnv 5639  cima 5643  Fun wfun 6507   Fn wfn 6508  wf 6509  cfv 6513  Fincfn 8920  infcinf 9398  cr 11073  0cc0 11074  +∞cpnf 11211   < clt 11214  cle 11215  0cn0 12448  cuz 12799  chash 14301  Basecbs 17185  LModclmod 20772  LSubSpclss 20843  LSpanclspn 20883  LBasisclbs 20987  LVecclvec 21015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-oadd 8440  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-xnn0 12522  df-z 12536  df-uz 12800  df-fz 13475  df-hash 14302  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-sbg 18876  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-drng 20646  df-lmod 20774  df-lss 20844  df-lsp 20884  df-lbs 20988  df-lvec 21016
This theorem is referenced by:  lbslelsp  33599
  Copyright terms: Public domain W3C validator