| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprdomnb | Structured version Visualization version GIF version | ||
| Description: A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn 20678. (Contributed by SN, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| opprdomn.1 | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| opprdomnb | ⊢ (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprdomn.1 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 2 | 1 | opprnzrb 20481 | . . 3 ⊢ (𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing) |
| 3 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | 1, 3 | opprbas 20303 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 5 | eqid 2735 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | eqid 2735 | . . . . . . . . . 10 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
| 7 | 3, 5, 1, 6 | opprmul 20300 | . . . . . . . . 9 ⊢ (𝑦(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)𝑦) |
| 8 | 7 | eqcomi 2744 | . . . . . . . 8 ⊢ (𝑥(.r‘𝑅)𝑦) = (𝑦(.r‘𝑂)𝑥) |
| 9 | eqid 2735 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 10 | 1, 9 | oppr0 20309 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑂) |
| 11 | 8, 10 | eqeq12i 2753 | . . . . . . 7 ⊢ ((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) ↔ (𝑦(.r‘𝑂)𝑥) = (0g‘𝑂)) |
| 12 | 10 | eqeq2i 2748 | . . . . . . . . 9 ⊢ (𝑥 = (0g‘𝑅) ↔ 𝑥 = (0g‘𝑂)) |
| 13 | 10 | eqeq2i 2748 | . . . . . . . . 9 ⊢ (𝑦 = (0g‘𝑅) ↔ 𝑦 = (0g‘𝑂)) |
| 14 | 12, 13 | orbi12i 914 | . . . . . . . 8 ⊢ ((𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅)) ↔ (𝑥 = (0g‘𝑂) ∨ 𝑦 = (0g‘𝑂))) |
| 15 | orcom 870 | . . . . . . . 8 ⊢ ((𝑥 = (0g‘𝑂) ∨ 𝑦 = (0g‘𝑂)) ↔ (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂))) | |
| 16 | 14, 15 | bitri 275 | . . . . . . 7 ⊢ ((𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅)) ↔ (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂))) |
| 17 | 11, 16 | imbi12i 350 | . . . . . 6 ⊢ (((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅))) ↔ ((𝑦(.r‘𝑂)𝑥) = (0g‘𝑂) → (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂)))) |
| 18 | 4, 17 | raleqbii 3323 | . . . . 5 ⊢ (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅))) ↔ ∀𝑦 ∈ (Base‘𝑂)((𝑦(.r‘𝑂)𝑥) = (0g‘𝑂) → (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂)))) |
| 19 | 4, 18 | raleqbii 3323 | . . . 4 ⊢ (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅))) ↔ ∀𝑥 ∈ (Base‘𝑂)∀𝑦 ∈ (Base‘𝑂)((𝑦(.r‘𝑂)𝑥) = (0g‘𝑂) → (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂)))) |
| 20 | ralcom 3270 | . . . 4 ⊢ (∀𝑥 ∈ (Base‘𝑂)∀𝑦 ∈ (Base‘𝑂)((𝑦(.r‘𝑂)𝑥) = (0g‘𝑂) → (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂))) ↔ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r‘𝑂)𝑥) = (0g‘𝑂) → (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂)))) | |
| 21 | 19, 20 | bitri 275 | . . 3 ⊢ (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅))) ↔ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r‘𝑂)𝑥) = (0g‘𝑂) → (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂)))) |
| 22 | 2, 21 | anbi12i 628 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅)))) ↔ (𝑂 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r‘𝑂)𝑥) = (0g‘𝑂) → (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂))))) |
| 23 | 3, 5, 9 | isdomn 20665 | . 2 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅))))) |
| 24 | eqid 2735 | . . 3 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 25 | eqid 2735 | . . 3 ⊢ (0g‘𝑂) = (0g‘𝑂) | |
| 26 | 24, 6, 25 | isdomn 20665 | . 2 ⊢ (𝑂 ∈ Domn ↔ (𝑂 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r‘𝑂)𝑥) = (0g‘𝑂) → (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂))))) |
| 27 | 22, 23, 26 | 3bitr4i 303 | 1 ⊢ (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 .rcmulr 17272 0gc0g 17453 opprcoppr 20296 NzRingcnzr 20472 Domncdomn 20652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-nzr 20473 df-domn 20655 |
| This theorem is referenced by: opprdomn 20678 isdomn4r 20679 |
| Copyright terms: Public domain | W3C validator |