| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprdomnb | Structured version Visualization version GIF version | ||
| Description: A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn 20603. (Contributed by SN, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| opprdomn.1 | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| opprdomnb | ⊢ (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprdomn.1 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 2 | 1 | opprnzrb 20406 | . . 3 ⊢ (𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing) |
| 3 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | 1, 3 | opprbas 20228 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 5 | eqid 2729 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | eqid 2729 | . . . . . . . . . 10 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
| 7 | 3, 5, 1, 6 | opprmul 20225 | . . . . . . . . 9 ⊢ (𝑦(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)𝑦) |
| 8 | 7 | eqcomi 2738 | . . . . . . . 8 ⊢ (𝑥(.r‘𝑅)𝑦) = (𝑦(.r‘𝑂)𝑥) |
| 9 | eqid 2729 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 10 | 1, 9 | oppr0 20234 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑂) |
| 11 | 8, 10 | eqeq12i 2747 | . . . . . . 7 ⊢ ((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) ↔ (𝑦(.r‘𝑂)𝑥) = (0g‘𝑂)) |
| 12 | 10 | eqeq2i 2742 | . . . . . . . . 9 ⊢ (𝑥 = (0g‘𝑅) ↔ 𝑥 = (0g‘𝑂)) |
| 13 | 10 | eqeq2i 2742 | . . . . . . . . 9 ⊢ (𝑦 = (0g‘𝑅) ↔ 𝑦 = (0g‘𝑂)) |
| 14 | 12, 13 | orbi12i 914 | . . . . . . . 8 ⊢ ((𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅)) ↔ (𝑥 = (0g‘𝑂) ∨ 𝑦 = (0g‘𝑂))) |
| 15 | orcom 870 | . . . . . . . 8 ⊢ ((𝑥 = (0g‘𝑂) ∨ 𝑦 = (0g‘𝑂)) ↔ (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂))) | |
| 16 | 14, 15 | bitri 275 | . . . . . . 7 ⊢ ((𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅)) ↔ (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂))) |
| 17 | 11, 16 | imbi12i 350 | . . . . . 6 ⊢ (((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅))) ↔ ((𝑦(.r‘𝑂)𝑥) = (0g‘𝑂) → (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂)))) |
| 18 | 4, 17 | raleqbii 3307 | . . . . 5 ⊢ (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅))) ↔ ∀𝑦 ∈ (Base‘𝑂)((𝑦(.r‘𝑂)𝑥) = (0g‘𝑂) → (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂)))) |
| 19 | 4, 18 | raleqbii 3307 | . . . 4 ⊢ (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅))) ↔ ∀𝑥 ∈ (Base‘𝑂)∀𝑦 ∈ (Base‘𝑂)((𝑦(.r‘𝑂)𝑥) = (0g‘𝑂) → (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂)))) |
| 20 | ralcom 3257 | . . . 4 ⊢ (∀𝑥 ∈ (Base‘𝑂)∀𝑦 ∈ (Base‘𝑂)((𝑦(.r‘𝑂)𝑥) = (0g‘𝑂) → (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂))) ↔ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r‘𝑂)𝑥) = (0g‘𝑂) → (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂)))) | |
| 21 | 19, 20 | bitri 275 | . . 3 ⊢ (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅))) ↔ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r‘𝑂)𝑥) = (0g‘𝑂) → (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂)))) |
| 22 | 2, 21 | anbi12i 628 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅)))) ↔ (𝑂 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r‘𝑂)𝑥) = (0g‘𝑂) → (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂))))) |
| 23 | 3, 5, 9 | isdomn 20590 | . 2 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅))))) |
| 24 | eqid 2729 | . . 3 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 25 | eqid 2729 | . . 3 ⊢ (0g‘𝑂) = (0g‘𝑂) | |
| 26 | 24, 6, 25 | isdomn 20590 | . 2 ⊢ (𝑂 ∈ Domn ↔ (𝑂 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r‘𝑂)𝑥) = (0g‘𝑂) → (𝑦 = (0g‘𝑂) ∨ 𝑥 = (0g‘𝑂))))) |
| 27 | 22, 23, 26 | 3bitr4i 303 | 1 ⊢ (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 .rcmulr 17162 0gc0g 17343 opprcoppr 20221 NzRingcnzr 20397 Domncdomn 20577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-nzr 20398 df-domn 20580 |
| This theorem is referenced by: opprdomn 20603 isdomn4r 20604 |
| Copyright terms: Public domain | W3C validator |