MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgrhm Structured version   Visualization version   GIF version

Theorem mulgrhm 20191
Description: The powers of the element 1 give a ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m · = (.g𝑅)
mulgghm2.f 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
mulgrhm.1 1 = (1r𝑅)
Assertion
Ref Expression
mulgrhm (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
Distinct variable groups:   𝑅,𝑛   · ,𝑛   1 ,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem mulgrhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 20169 . 2 ℤ = (Base‘ℤring)
2 zring1 20174 . 2 1 = (1r‘ℤring)
3 mulgrhm.1 . 2 1 = (1r𝑅)
4 zringmulr 20172 . 2 · = (.r‘ℤring)
5 eqid 2798 . 2 (.r𝑅) = (.r𝑅)
6 zringring 20166 . . 3 ring ∈ Ring
76a1i 11 . 2 (𝑅 ∈ Ring → ℤring ∈ Ring)
8 id 22 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
9 1z 12000 . . . 4 1 ∈ ℤ
10 oveq1 7142 . . . . 5 (𝑛 = 1 → (𝑛 · 1 ) = (1 · 1 ))
11 mulgghm2.f . . . . 5 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
12 ovex 7168 . . . . 5 (1 · 1 ) ∈ V
1310, 11, 12fvmpt 6745 . . . 4 (1 ∈ ℤ → (𝐹‘1) = (1 · 1 ))
149, 13ax-mp 5 . . 3 (𝐹‘1) = (1 · 1 )
15 eqid 2798 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
1615, 3ringidcl 19314 . . . 4 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
17 mulgghm2.m . . . . 5 · = (.g𝑅)
1815, 17mulg1 18227 . . . 4 ( 1 ∈ (Base‘𝑅) → (1 · 1 ) = 1 )
1916, 18syl 17 . . 3 (𝑅 ∈ Ring → (1 · 1 ) = 1 )
2014, 19syl5eq 2845 . 2 (𝑅 ∈ Ring → (𝐹‘1) = 1 )
21 ringgrp 19295 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2221adantr 484 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Grp)
23 simprr 772 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
2416adantr 484 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 ∈ (Base‘𝑅))
2515, 17mulgcl 18237 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 1 ∈ (Base‘𝑅)) → (𝑦 · 1 ) ∈ (Base‘𝑅))
2622, 23, 24, 25syl3anc 1368 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 1 ) ∈ (Base‘𝑅))
2715, 5, 3ringlidm 19317 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑦 · 1 ) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)(𝑦 · 1 )) = (𝑦 · 1 ))
2826, 27syldan 594 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ( 1 (.r𝑅)(𝑦 · 1 )) = (𝑦 · 1 ))
2928oveq2d 7151 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))) = (𝑥 · (𝑦 · 1 )))
30 simpl 486 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Ring)
31 simprl 770 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
3215, 17, 5mulgass2 19347 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 1 ∈ (Base‘𝑅) ∧ (𝑦 · 1 ) ∈ (Base‘𝑅))) → ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )) = (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))))
3330, 31, 24, 26, 32syl13anc 1369 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )) = (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))))
3415, 17mulgass 18256 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈ (Base‘𝑅))) → ((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 )))
3522, 31, 23, 24, 34syl13anc 1369 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 )))
3629, 33, 353eqtr4rd 2844 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
37 zmulcl 12019 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
3837adantl 485 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
39 oveq1 7142 . . . . 5 (𝑛 = (𝑥 · 𝑦) → (𝑛 · 1 ) = ((𝑥 · 𝑦) · 1 ))
40 ovex 7168 . . . . 5 ((𝑥 · 𝑦) · 1 ) ∈ V
4139, 11, 40fvmpt 6745 . . . 4 ((𝑥 · 𝑦) ∈ ℤ → (𝐹‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦) · 1 ))
4238, 41syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦) · 1 ))
43 oveq1 7142 . . . . . 6 (𝑛 = 𝑥 → (𝑛 · 1 ) = (𝑥 · 1 ))
44 ovex 7168 . . . . . 6 (𝑥 · 1 ) ∈ V
4543, 11, 44fvmpt 6745 . . . . 5 (𝑥 ∈ ℤ → (𝐹𝑥) = (𝑥 · 1 ))
46 oveq1 7142 . . . . . 6 (𝑛 = 𝑦 → (𝑛 · 1 ) = (𝑦 · 1 ))
47 ovex 7168 . . . . . 6 (𝑦 · 1 ) ∈ V
4846, 11, 47fvmpt 6745 . . . . 5 (𝑦 ∈ ℤ → (𝐹𝑦) = (𝑦 · 1 ))
4945, 48oveqan12d 7154 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝐹𝑥)(.r𝑅)(𝐹𝑦)) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
5049adantl 485 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐹𝑥)(.r𝑅)(𝐹𝑦)) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
5136, 42, 503eqtr4d 2843 . 2 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥)(.r𝑅)(𝐹𝑦)))
5217, 11, 15mulgghm2 20190 . . 3 ((𝑅 ∈ Grp ∧ 1 ∈ (Base‘𝑅)) → 𝐹 ∈ (ℤring GrpHom 𝑅))
5321, 16, 52syl2anc 587 . 2 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring GrpHom 𝑅))
541, 2, 3, 4, 5, 7, 8, 20, 51, 53isrhm2d 19476 1 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cmpt 5110  cfv 6324  (class class class)co 7135  1c1 10527   · cmul 10531  cz 11969  Basecbs 16475  .rcmulr 16558  Grpcgrp 18095  .gcmg 18216   GrpHom cghm 18347  1rcur 19244  Ringcrg 19290   RingHom crh 19460  ringzring 20163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-seq 13365  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cmn 18900  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-rnghom 19463  df-subrg 19526  df-cnfld 20092  df-zring 20164
This theorem is referenced by:  mulgrhm2  20192
  Copyright terms: Public domain W3C validator