MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgrhm Structured version   Visualization version   GIF version

Theorem mulgrhm 20621
Description: The powers of the element 1 give a ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m · = (.g𝑅)
mulgghm2.f 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
mulgrhm.1 1 = (1r𝑅)
Assertion
Ref Expression
mulgrhm (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
Distinct variable groups:   𝑅,𝑛   · ,𝑛   1 ,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem mulgrhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 20599 . 2 ℤ = (Base‘ℤring)
2 zring1 20604 . 2 1 = (1r‘ℤring)
3 mulgrhm.1 . 2 1 = (1r𝑅)
4 zringmulr 20602 . 2 · = (.r‘ℤring)
5 eqid 2821 . 2 (.r𝑅) = (.r𝑅)
6 zringring 20596 . . 3 ring ∈ Ring
76a1i 11 . 2 (𝑅 ∈ Ring → ℤring ∈ Ring)
8 id 22 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
9 1z 11990 . . . 4 1 ∈ ℤ
10 oveq1 7137 . . . . 5 (𝑛 = 1 → (𝑛 · 1 ) = (1 · 1 ))
11 mulgghm2.f . . . . 5 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
12 ovex 7163 . . . . 5 (1 · 1 ) ∈ V
1310, 11, 12fvmpt 6741 . . . 4 (1 ∈ ℤ → (𝐹‘1) = (1 · 1 ))
149, 13ax-mp 5 . . 3 (𝐹‘1) = (1 · 1 )
15 eqid 2821 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
1615, 3ringidcl 19297 . . . 4 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
17 mulgghm2.m . . . . 5 · = (.g𝑅)
1815, 17mulg1 18214 . . . 4 ( 1 ∈ (Base‘𝑅) → (1 · 1 ) = 1 )
1916, 18syl 17 . . 3 (𝑅 ∈ Ring → (1 · 1 ) = 1 )
2014, 19syl5eq 2868 . 2 (𝑅 ∈ Ring → (𝐹‘1) = 1 )
21 ringgrp 19281 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2221adantr 484 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Grp)
23 simprr 772 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
2416adantr 484 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 ∈ (Base‘𝑅))
2515, 17mulgcl 18224 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 1 ∈ (Base‘𝑅)) → (𝑦 · 1 ) ∈ (Base‘𝑅))
2622, 23, 24, 25syl3anc 1368 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 1 ) ∈ (Base‘𝑅))
2715, 5, 3ringlidm 19300 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑦 · 1 ) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)(𝑦 · 1 )) = (𝑦 · 1 ))
2826, 27syldan 594 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ( 1 (.r𝑅)(𝑦 · 1 )) = (𝑦 · 1 ))
2928oveq2d 7146 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))) = (𝑥 · (𝑦 · 1 )))
30 simpl 486 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Ring)
31 simprl 770 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
3215, 17, 5mulgass2 19330 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 1 ∈ (Base‘𝑅) ∧ (𝑦 · 1 ) ∈ (Base‘𝑅))) → ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )) = (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))))
3330, 31, 24, 26, 32syl13anc 1369 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )) = (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))))
3415, 17mulgass 18243 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈ (Base‘𝑅))) → ((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 )))
3522, 31, 23, 24, 34syl13anc 1369 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 )))
3629, 33, 353eqtr4rd 2867 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
37 zmulcl 12009 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
3837adantl 485 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
39 oveq1 7137 . . . . 5 (𝑛 = (𝑥 · 𝑦) → (𝑛 · 1 ) = ((𝑥 · 𝑦) · 1 ))
40 ovex 7163 . . . . 5 ((𝑥 · 𝑦) · 1 ) ∈ V
4139, 11, 40fvmpt 6741 . . . 4 ((𝑥 · 𝑦) ∈ ℤ → (𝐹‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦) · 1 ))
4238, 41syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦) · 1 ))
43 oveq1 7137 . . . . . 6 (𝑛 = 𝑥 → (𝑛 · 1 ) = (𝑥 · 1 ))
44 ovex 7163 . . . . . 6 (𝑥 · 1 ) ∈ V
4543, 11, 44fvmpt 6741 . . . . 5 (𝑥 ∈ ℤ → (𝐹𝑥) = (𝑥 · 1 ))
46 oveq1 7137 . . . . . 6 (𝑛 = 𝑦 → (𝑛 · 1 ) = (𝑦 · 1 ))
47 ovex 7163 . . . . . 6 (𝑦 · 1 ) ∈ V
4846, 11, 47fvmpt 6741 . . . . 5 (𝑦 ∈ ℤ → (𝐹𝑦) = (𝑦 · 1 ))
4945, 48oveqan12d 7149 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝐹𝑥)(.r𝑅)(𝐹𝑦)) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
5049adantl 485 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐹𝑥)(.r𝑅)(𝐹𝑦)) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
5136, 42, 503eqtr4d 2866 . 2 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥)(.r𝑅)(𝐹𝑦)))
5217, 11, 15mulgghm2 20620 . . 3 ((𝑅 ∈ Grp ∧ 1 ∈ (Base‘𝑅)) → 𝐹 ∈ (ℤring GrpHom 𝑅))
5321, 16, 52syl2anc 587 . 2 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring GrpHom 𝑅))
541, 2, 3, 4, 5, 7, 8, 20, 51, 53isrhm2d 19459 1 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  cmpt 5119  cfv 6328  (class class class)co 7130  1c1 10515   · cmul 10519  cz 11959  Basecbs 16462  .rcmulr 16545  Grpcgrp 18082  .gcmg 18203   GrpHom cghm 18334  1rcur 19230  Ringcrg 19276   RingHom crh 19443  ringzring 20593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-addf 10593  ax-mulf 10594
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-fz 12876  df-seq 13353  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-starv 16559  df-tset 16563  df-ple 16564  df-ds 16566  df-unif 16567  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-mhm 17935  df-grp 18085  df-minusg 18086  df-mulg 18204  df-subg 18255  df-ghm 18335  df-cmn 18887  df-mgp 19219  df-ur 19231  df-ring 19278  df-cring 19279  df-rnghom 19446  df-subrg 19509  df-cnfld 20522  df-zring 20594
This theorem is referenced by:  mulgrhm2  20622
  Copyright terms: Public domain W3C validator