Step | Hyp | Ref
| Expression |
1 | | zringbas 20676 |
. 2
⊢ ℤ =
(Base‘ℤring) |
2 | | zring1 20681 |
. 2
⊢ 1 =
(1r‘ℤring) |
3 | | mulgrhm.1 |
. 2
⊢ 1 =
(1r‘𝑅) |
4 | | zringmulr 20679 |
. 2
⊢ ·
= (.r‘ℤring) |
5 | | eqid 2738 |
. 2
⊢
(.r‘𝑅) = (.r‘𝑅) |
6 | | zringring 20673 |
. . 3
⊢
ℤring ∈ Ring |
7 | 6 | a1i 11 |
. 2
⊢ (𝑅 ∈ Ring →
ℤring ∈ Ring) |
8 | | id 22 |
. 2
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) |
9 | | 1z 12350 |
. . . 4
⊢ 1 ∈
ℤ |
10 | | oveq1 7282 |
. . . . 5
⊢ (𝑛 = 1 → (𝑛 · 1 ) = (1 · 1 )) |
11 | | mulgghm2.f |
. . . . 5
⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) |
12 | | ovex 7308 |
. . . . 5
⊢ (1 · 1 ) ∈
V |
13 | 10, 11, 12 | fvmpt 6875 |
. . . 4
⊢ (1 ∈
ℤ → (𝐹‘1)
= (1 · 1 )) |
14 | 9, 13 | ax-mp 5 |
. . 3
⊢ (𝐹‘1) = (1 · 1
) |
15 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
16 | 15, 3 | ringidcl 19807 |
. . . 4
⊢ (𝑅 ∈ Ring → 1 ∈
(Base‘𝑅)) |
17 | | mulgghm2.m |
. . . . 5
⊢ · =
(.g‘𝑅) |
18 | 15, 17 | mulg1 18711 |
. . . 4
⊢ ( 1 ∈
(Base‘𝑅) → (1
·
1 ) =
1
) |
19 | 16, 18 | syl 17 |
. . 3
⊢ (𝑅 ∈ Ring → (1 · 1 ) = 1
) |
20 | 14, 19 | eqtrid 2790 |
. 2
⊢ (𝑅 ∈ Ring → (𝐹‘1) = 1 ) |
21 | | ringgrp 19788 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
22 | 21 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Grp) |
23 | | simprr 770 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈
ℤ) |
24 | 16 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 ∈
(Base‘𝑅)) |
25 | 15, 17 | mulgcl 18721 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 1 ∈
(Base‘𝑅)) →
(𝑦 · 1 ) ∈ (Base‘𝑅)) |
26 | 22, 23, 24, 25 | syl3anc 1370 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 1 ) ∈ (Base‘𝑅)) |
27 | 15, 5, 3 | ringlidm 19810 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑦 · 1 ) ∈ (Base‘𝑅)) → ( 1 (.r‘𝑅)(𝑦 · 1 )) = (𝑦 · 1 )) |
28 | 26, 27 | syldan 591 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ( 1
(.r‘𝑅)(𝑦 · 1 )) = (𝑦 · 1 )) |
29 | 28 | oveq2d 7291 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · ( 1
(.r‘𝑅)(𝑦 · 1 ))) = (𝑥 · (𝑦 · 1 ))) |
30 | | simpl 483 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Ring) |
31 | | simprl 768 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈
ℤ) |
32 | 15, 17, 5 | mulgass2 19840 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 1 ∈
(Base‘𝑅) ∧ (𝑦 · 1 ) ∈ (Base‘𝑅))) → ((𝑥 · 1
)(.r‘𝑅)(𝑦 · 1 )) = (𝑥 · ( 1
(.r‘𝑅)(𝑦 · 1 )))) |
33 | 30, 31, 24, 26, 32 | syl13anc 1371 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 1
)(.r‘𝑅)(𝑦 · 1 )) = (𝑥 · ( 1
(.r‘𝑅)(𝑦 · 1 )))) |
34 | 15, 17 | mulgass 18740 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈
(Base‘𝑅))) →
((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 ))) |
35 | 22, 31, 23, 24, 34 | syl13anc 1371 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 ))) |
36 | 29, 33, 35 | 3eqtr4rd 2789 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = ((𝑥 · 1
)(.r‘𝑅)(𝑦 · 1 ))) |
37 | | zmulcl 12369 |
. . . . 5
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) |
38 | 37 | adantl 482 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ) |
39 | | oveq1 7282 |
. . . . 5
⊢ (𝑛 = (𝑥 · 𝑦) → (𝑛 · 1 ) = ((𝑥 · 𝑦) · 1 )) |
40 | | ovex 7308 |
. . . . 5
⊢ ((𝑥 · 𝑦) · 1 ) ∈
V |
41 | 39, 11, 40 | fvmpt 6875 |
. . . 4
⊢ ((𝑥 · 𝑦) ∈ ℤ → (𝐹‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦) · 1 )) |
42 | 38, 41 | syl 17 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦) · 1 )) |
43 | | oveq1 7282 |
. . . . . 6
⊢ (𝑛 = 𝑥 → (𝑛 · 1 ) = (𝑥 · 1 )) |
44 | | ovex 7308 |
. . . . . 6
⊢ (𝑥 · 1 ) ∈
V |
45 | 43, 11, 44 | fvmpt 6875 |
. . . . 5
⊢ (𝑥 ∈ ℤ → (𝐹‘𝑥) = (𝑥 · 1 )) |
46 | | oveq1 7282 |
. . . . . 6
⊢ (𝑛 = 𝑦 → (𝑛 · 1 ) = (𝑦 · 1 )) |
47 | | ovex 7308 |
. . . . . 6
⊢ (𝑦 · 1 ) ∈
V |
48 | 46, 11, 47 | fvmpt 6875 |
. . . . 5
⊢ (𝑦 ∈ ℤ → (𝐹‘𝑦) = (𝑦 · 1 )) |
49 | 45, 48 | oveqan12d 7294 |
. . . 4
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝐹‘𝑥)(.r‘𝑅)(𝐹‘𝑦)) = ((𝑥 · 1
)(.r‘𝑅)(𝑦 · 1 ))) |
50 | 49 | adantl 482 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐹‘𝑥)(.r‘𝑅)(𝐹‘𝑦)) = ((𝑥 · 1
)(.r‘𝑅)(𝑦 · 1 ))) |
51 | 36, 42, 50 | 3eqtr4d 2788 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥)(.r‘𝑅)(𝐹‘𝑦))) |
52 | 17, 11, 15 | mulgghm2 20698 |
. . 3
⊢ ((𝑅 ∈ Grp ∧ 1 ∈
(Base‘𝑅)) →
𝐹 ∈
(ℤring GrpHom 𝑅)) |
53 | 21, 16, 52 | syl2anc 584 |
. 2
⊢ (𝑅 ∈ Ring → 𝐹 ∈ (ℤring
GrpHom 𝑅)) |
54 | 1, 2, 3, 4, 5, 7, 8, 20, 51, 53 | isrhm2d 19972 |
1
⊢ (𝑅 ∈ Ring → 𝐹 ∈ (ℤring
RingHom 𝑅)) |