MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgrhm Structured version   Visualization version   GIF version

Theorem mulgrhm 21488
Description: The powers of the element 1 give a ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m · = (.g𝑅)
mulgghm2.f 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
mulgrhm.1 1 = (1r𝑅)
Assertion
Ref Expression
mulgrhm (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
Distinct variable groups:   𝑅,𝑛   · ,𝑛   1 ,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem mulgrhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 21464 . 2 ℤ = (Base‘ℤring)
2 zring1 21470 . 2 1 = (1r‘ℤring)
3 mulgrhm.1 . 2 1 = (1r𝑅)
4 zringmulr 21468 . 2 · = (.r‘ℤring)
5 eqid 2737 . 2 (.r𝑅) = (.r𝑅)
6 zringring 21460 . . 3 ring ∈ Ring
76a1i 11 . 2 (𝑅 ∈ Ring → ℤring ∈ Ring)
8 id 22 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
9 1z 12647 . . . 4 1 ∈ ℤ
10 oveq1 7438 . . . . 5 (𝑛 = 1 → (𝑛 · 1 ) = (1 · 1 ))
11 mulgghm2.f . . . . 5 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
12 ovex 7464 . . . . 5 (1 · 1 ) ∈ V
1310, 11, 12fvmpt 7016 . . . 4 (1 ∈ ℤ → (𝐹‘1) = (1 · 1 ))
149, 13ax-mp 5 . . 3 (𝐹‘1) = (1 · 1 )
15 eqid 2737 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
1615, 3ringidcl 20262 . . . 4 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
17 mulgghm2.m . . . . 5 · = (.g𝑅)
1815, 17mulg1 19099 . . . 4 ( 1 ∈ (Base‘𝑅) → (1 · 1 ) = 1 )
1916, 18syl 17 . . 3 (𝑅 ∈ Ring → (1 · 1 ) = 1 )
2014, 19eqtrid 2789 . 2 (𝑅 ∈ Ring → (𝐹‘1) = 1 )
21 ringgrp 20235 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2221adantr 480 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Grp)
23 simprr 773 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
2416adantr 480 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 ∈ (Base‘𝑅))
2515, 17mulgcl 19109 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 1 ∈ (Base‘𝑅)) → (𝑦 · 1 ) ∈ (Base‘𝑅))
2622, 23, 24, 25syl3anc 1373 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 1 ) ∈ (Base‘𝑅))
2715, 5, 3ringlidm 20266 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑦 · 1 ) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)(𝑦 · 1 )) = (𝑦 · 1 ))
2826, 27syldan 591 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ( 1 (.r𝑅)(𝑦 · 1 )) = (𝑦 · 1 ))
2928oveq2d 7447 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))) = (𝑥 · (𝑦 · 1 )))
30 simpl 482 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Ring)
31 simprl 771 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
3215, 17, 5mulgass2 20306 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 1 ∈ (Base‘𝑅) ∧ (𝑦 · 1 ) ∈ (Base‘𝑅))) → ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )) = (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))))
3330, 31, 24, 26, 32syl13anc 1374 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )) = (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))))
3415, 17mulgass 19129 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈ (Base‘𝑅))) → ((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 )))
3522, 31, 23, 24, 34syl13anc 1374 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 )))
3629, 33, 353eqtr4rd 2788 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
37 zmulcl 12666 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
3837adantl 481 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
39 oveq1 7438 . . . . 5 (𝑛 = (𝑥 · 𝑦) → (𝑛 · 1 ) = ((𝑥 · 𝑦) · 1 ))
40 ovex 7464 . . . . 5 ((𝑥 · 𝑦) · 1 ) ∈ V
4139, 11, 40fvmpt 7016 . . . 4 ((𝑥 · 𝑦) ∈ ℤ → (𝐹‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦) · 1 ))
4238, 41syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦) · 1 ))
43 oveq1 7438 . . . . . 6 (𝑛 = 𝑥 → (𝑛 · 1 ) = (𝑥 · 1 ))
44 ovex 7464 . . . . . 6 (𝑥 · 1 ) ∈ V
4543, 11, 44fvmpt 7016 . . . . 5 (𝑥 ∈ ℤ → (𝐹𝑥) = (𝑥 · 1 ))
46 oveq1 7438 . . . . . 6 (𝑛 = 𝑦 → (𝑛 · 1 ) = (𝑦 · 1 ))
47 ovex 7464 . . . . . 6 (𝑦 · 1 ) ∈ V
4846, 11, 47fvmpt 7016 . . . . 5 (𝑦 ∈ ℤ → (𝐹𝑦) = (𝑦 · 1 ))
4945, 48oveqan12d 7450 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝐹𝑥)(.r𝑅)(𝐹𝑦)) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
5049adantl 481 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐹𝑥)(.r𝑅)(𝐹𝑦)) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
5136, 42, 503eqtr4d 2787 . 2 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥)(.r𝑅)(𝐹𝑦)))
5217, 11, 15mulgghm2 21487 . . 3 ((𝑅 ∈ Grp ∧ 1 ∈ (Base‘𝑅)) → 𝐹 ∈ (ℤring GrpHom 𝑅))
5321, 16, 52syl2anc 584 . 2 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring GrpHom 𝑅))
541, 2, 3, 4, 5, 7, 8, 20, 51, 53isrhm2d 20487 1 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cmpt 5225  cfv 6561  (class class class)co 7431  1c1 11156   · cmul 11160  cz 12613  Basecbs 17247  .rcmulr 17298  Grpcgrp 18951  .gcmg 19085   GrpHom cghm 19230  1rcur 20178  Ringcrg 20230   RingHom crh 20469  ringczring 21457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-seq 14043  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-minusg 18955  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-cnfld 21365  df-zring 21458
This theorem is referenced by:  mulgrhm2  21489
  Copyright terms: Public domain W3C validator