MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmqusnsg Structured version   Visualization version   GIF version

Theorem rhmqusnsg 21202
Description: The mapping 𝐽 induced by a ring homomorphism 𝐹 from a subring 𝑁 of the quotient group 𝑄 over 𝐹's kernel 𝐾 is a ring homomorphism. (Contributed by Thierry Arnoux, 13-May-2025.)
Hypotheses
Ref Expression
rhmqusnsg.0 0 = (0g𝐻)
rhmqusnsg.f (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))
rhmqusnsg.k 𝐾 = (𝐹 “ { 0 })
rhmqusnsg.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
rhmqusnsg.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
rhmqusnsg.g (𝜑𝐺 ∈ CRing)
rhmqusnsg.n (𝜑𝑁𝐾)
rhmqusnsg.1 (𝜑𝑁 ∈ (LIdeal‘𝐺))
Assertion
Ref Expression
rhmqusnsg (𝜑𝐽 ∈ (𝑄 RingHom 𝐻))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑁,𝑞   𝑄,𝑞   𝜑,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem rhmqusnsg
Dummy variables 𝑟 𝑥 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 (Base‘𝑄) = (Base‘𝑄)
2 eqid 2730 . 2 (1r𝑄) = (1r𝑄)
3 eqid 2730 . 2 (1r𝐻) = (1r𝐻)
4 eqid 2730 . 2 (.r𝑄) = (.r𝑄)
5 eqid 2730 . 2 (.r𝐻) = (.r𝐻)
6 rhmqusnsg.g . . . . 5 (𝜑𝐺 ∈ CRing)
76crngringd 20162 . . . 4 (𝜑𝐺 ∈ Ring)
8 rhmqusnsg.1 . . . . 5 (𝜑𝑁 ∈ (LIdeal‘𝐺))
9 eqid 2730 . . . . . . 7 (LIdeal‘𝐺) = (LIdeal‘𝐺)
109crng2idl 21198 . . . . . 6 (𝐺 ∈ CRing → (LIdeal‘𝐺) = (2Ideal‘𝐺))
116, 10syl 17 . . . . 5 (𝜑 → (LIdeal‘𝐺) = (2Ideal‘𝐺))
128, 11eleqtrd 2831 . . . 4 (𝜑𝑁 ∈ (2Ideal‘𝐺))
13 rhmqusnsg.q . . . . 5 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
14 eqid 2730 . . . . 5 (2Ideal‘𝐺) = (2Ideal‘𝐺)
15 eqid 2730 . . . . 5 (1r𝐺) = (1r𝐺)
1613, 14, 15qus1 21191 . . . 4 ((𝐺 ∈ Ring ∧ 𝑁 ∈ (2Ideal‘𝐺)) → (𝑄 ∈ Ring ∧ [(1r𝐺)](𝐺 ~QG 𝑁) = (1r𝑄)))
177, 12, 16syl2anc 584 . . 3 (𝜑 → (𝑄 ∈ Ring ∧ [(1r𝐺)](𝐺 ~QG 𝑁) = (1r𝑄)))
1817simpld 494 . 2 (𝜑𝑄 ∈ Ring)
19 rhmqusnsg.f . . 3 (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))
20 rhmrcl2 20393 . . 3 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐻 ∈ Ring)
2119, 20syl 17 . 2 (𝜑𝐻 ∈ Ring)
22 rhmqusnsg.0 . . . 4 0 = (0g𝐻)
23 rhmghm 20400 . . . . 5 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
2419, 23syl 17 . . . 4 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
25 rhmqusnsg.k . . . 4 𝐾 = (𝐹 “ { 0 })
26 rhmqusnsg.j . . . 4 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
27 rhmqusnsg.n . . . 4 (𝜑𝑁𝐾)
28 lidlnsg 21165 . . . . 5 ((𝐺 ∈ Ring ∧ 𝑁 ∈ (LIdeal‘𝐺)) → 𝑁 ∈ (NrmSGrp‘𝐺))
297, 8, 28syl2anc 584 . . . 4 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
30 eqid 2730 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
3130, 15ringidcl 20181 . . . . 5 (𝐺 ∈ Ring → (1r𝐺) ∈ (Base‘𝐺))
327, 31syl 17 . . . 4 (𝜑 → (1r𝐺) ∈ (Base‘𝐺))
3322, 24, 25, 13, 26, 27, 29, 32ghmqusnsglem1 19219 . . 3 (𝜑 → (𝐽‘[(1r𝐺)](𝐺 ~QG 𝑁)) = (𝐹‘(1r𝐺)))
3417simprd 495 . . . 4 (𝜑 → [(1r𝐺)](𝐺 ~QG 𝑁) = (1r𝑄))
3534fveq2d 6865 . . 3 (𝜑 → (𝐽‘[(1r𝐺)](𝐺 ~QG 𝑁)) = (𝐽‘(1r𝑄)))
3615, 3rhm1 20405 . . . 4 (𝐹 ∈ (𝐺 RingHom 𝐻) → (𝐹‘(1r𝐺)) = (1r𝐻))
3719, 36syl 17 . . 3 (𝜑 → (𝐹‘(1r𝐺)) = (1r𝐻))
3833, 35, 373eqtr3d 2773 . 2 (𝜑 → (𝐽‘(1r𝑄)) = (1r𝐻))
3919ad6antr 736 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐹 ∈ (𝐺 RingHom 𝐻))
4013a1i 11 . . . . . . . . . . . . 13 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
41 eqidd 2731 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
42 ovexd 7425 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ~QG 𝑁) ∈ V)
4340, 41, 42, 6qusbas 17515 . . . . . . . . . . . 12 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
44 nsgsubg 19097 . . . . . . . . . . . . . 14 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
45 eqid 2730 . . . . . . . . . . . . . . 15 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
4630, 45eqger 19117 . . . . . . . . . . . . . 14 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
4729, 44, 463syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
4847qsss 8752 . . . . . . . . . . . 12 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ⊆ 𝒫 (Base‘𝐺))
4943, 48eqsstrrd 3985 . . . . . . . . . . 11 (𝜑 → (Base‘𝑄) ⊆ 𝒫 (Base‘𝐺))
5049sselda 3949 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺))
5150elpwid 4575 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺))
5251ad5antr 734 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ⊆ (Base‘𝐺))
53 simp-4r 783 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑥𝑟)
5452, 53sseldd 3950 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑥 ∈ (Base‘𝐺))
5549sselda 3949 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (Base‘𝑄)) → 𝑠 ∈ 𝒫 (Base‘𝐺))
5655elpwid 4575 . . . . . . . . . 10 ((𝜑𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺))
5756adantlr 715 . . . . . . . . 9 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺))
5857ad4antr 732 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ⊆ (Base‘𝐺))
59 simplr 768 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑦𝑠)
6058, 59sseldd 3950 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑦 ∈ (Base‘𝐺))
61 eqid 2730 . . . . . . . 8 (.r𝐺) = (.r𝐺)
6230, 61, 5rhmmul 20402 . . . . . . 7 ((𝐹 ∈ (𝐺 RingHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(.r𝐺)𝑦)) = ((𝐹𝑥)(.r𝐻)(𝐹𝑦)))
6339, 54, 60, 62syl3anc 1373 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐹‘(𝑥(.r𝐺)𝑦)) = ((𝐹𝑥)(.r𝐻)(𝐹𝑦)))
6447ad6antr 736 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
65 simp-6r 787 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ∈ (Base‘𝑄))
6643ad6antr 736 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
6765, 66eleqtrrd 2832 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)))
68 qsel 8772 . . . . . . . . . . 11 (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ∧ 𝑥𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝑁))
6964, 67, 53, 68syl3anc 1373 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 = [𝑥](𝐺 ~QG 𝑁))
70 simp-5r 785 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ∈ (Base‘𝑄))
7170, 66eleqtrrd 2832 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)))
72 qsel 8772 . . . . . . . . . . 11 (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ∧ 𝑦𝑠) → 𝑠 = [𝑦](𝐺 ~QG 𝑁))
7364, 71, 59, 72syl3anc 1373 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 = [𝑦](𝐺 ~QG 𝑁))
7469, 73oveq12d 7408 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑟(.r𝑄)𝑠) = ([𝑥](𝐺 ~QG 𝑁)(.r𝑄)[𝑦](𝐺 ~QG 𝑁)))
756ad6antr 736 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐺 ∈ CRing)
768ad6antr 736 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑁 ∈ (LIdeal‘𝐺))
7713, 30, 61, 4, 75, 76, 54, 60qusmulcrng 21201 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ([𝑥](𝐺 ~QG 𝑁)(.r𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(.r𝐺)𝑦)](𝐺 ~QG 𝑁))
7874, 77eqtr2d 2766 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → [(𝑥(.r𝐺)𝑦)](𝐺 ~QG 𝑁) = (𝑟(.r𝑄)𝑠))
7978fveq2d 6865 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘[(𝑥(.r𝐺)𝑦)](𝐺 ~QG 𝑁)) = (𝐽‘(𝑟(.r𝑄)𝑠)))
8039, 23syl 17 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
8127ad6antr 736 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑁𝐾)
8229ad6antr 736 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑁 ∈ (NrmSGrp‘𝐺))
83 rhmrcl1 20392 . . . . . . . . . 10 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐺 ∈ Ring)
8439, 83syl 17 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐺 ∈ Ring)
8530, 61, 84, 54, 60ringcld 20176 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑥(.r𝐺)𝑦) ∈ (Base‘𝐺))
8622, 80, 25, 13, 26, 81, 82, 85ghmqusnsglem1 19219 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘[(𝑥(.r𝐺)𝑦)](𝐺 ~QG 𝑁)) = (𝐹‘(𝑥(.r𝐺)𝑦)))
8779, 86eqtr3d 2767 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(.r𝑄)𝑠)) = (𝐹‘(𝑥(.r𝐺)𝑦)))
88 simpllr 775 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽𝑟) = (𝐹𝑥))
89 simpr 484 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽𝑠) = (𝐹𝑦))
9088, 89oveq12d 7408 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ((𝐽𝑟)(.r𝐻)(𝐽𝑠)) = ((𝐹𝑥)(.r𝐻)(𝐹𝑦)))
9163, 87, 903eqtr4d 2775 . . . . 5 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(.r𝑄)𝑠)) = ((𝐽𝑟)(.r𝐻)(𝐽𝑠)))
9224ad4antr 732 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
9327ad4antr 732 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑁𝐾)
9429ad4antr 732 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑁 ∈ (NrmSGrp‘𝐺))
95 simpllr 775 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑠 ∈ (Base‘𝑄))
9622, 92, 25, 13, 26, 93, 94, 95ghmqusnsglem2 19220 . . . . 5 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ∃𝑦𝑠 (𝐽𝑠) = (𝐹𝑦))
9791, 96r19.29a 3142 . . . 4 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑟(.r𝑄)𝑠)) = ((𝐽𝑟)(.r𝐻)(𝐽𝑠)))
9824ad2antrr 726 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
9927ad2antrr 726 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑁𝐾)
10029ad2antrr 726 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑁 ∈ (NrmSGrp‘𝐺))
101 simplr 768 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄))
10222, 98, 25, 13, 26, 99, 100, 101ghmqusnsglem2 19220 . . . 4 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
10397, 102r19.29a 3142 . . 3 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → (𝐽‘(𝑟(.r𝑄)𝑠)) = ((𝐽𝑟)(.r𝐻)(𝐽𝑠)))
104103anasss 466 . 2 ((𝜑 ∧ (𝑟 ∈ (Base‘𝑄) ∧ 𝑠 ∈ (Base‘𝑄))) → (𝐽‘(𝑟(.r𝑄)𝑠)) = ((𝐽𝑟)(.r𝐻)(𝐽𝑠)))
10522, 24, 25, 13, 26, 27, 29ghmqusnsg 19221 . 2 (𝜑𝐽 ∈ (𝑄 GrpHom 𝐻))
1061, 2, 3, 4, 5, 18, 21, 38, 104, 105isrhm2d 20403 1 (𝜑𝐽 ∈ (𝑄 RingHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  𝒫 cpw 4566  {csn 4592   cuni 4874  cmpt 5191  ccnv 5640  cima 5644  cfv 6514  (class class class)co 7390   Er wer 8671  [cec 8672   / cqs 8673  Basecbs 17186  .rcmulr 17228  0gc0g 17409   /s cqus 17475  SubGrpcsubg 19059  NrmSGrpcnsg 19060   ~QG cqg 19061   GrpHom cghm 19151  1rcur 20097  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  LIdealclidl 21123  2Idealc2idl 21166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-rhm 20388  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167
This theorem is referenced by:  zndvdchrrhm  41967  rhmqusspan  42180
  Copyright terms: Public domain W3C validator