Step | Hyp | Ref
| Expression |
1 | | eqid 2725 |
. 2
⊢
(Base‘𝑄) =
(Base‘𝑄) |
2 | | eqid 2725 |
. 2
⊢
(1r‘𝑄) = (1r‘𝑄) |
3 | | eqid 2725 |
. 2
⊢
(1r‘𝐻) = (1r‘𝐻) |
4 | | eqid 2725 |
. 2
⊢
(.r‘𝑄) = (.r‘𝑄) |
5 | | eqid 2725 |
. 2
⊢
(.r‘𝐻) = (.r‘𝐻) |
6 | | rhmqusnsg.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ CRing) |
7 | 6 | crngringd 20198 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ Ring) |
8 | | rhmqusnsg.1 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (LIdeal‘𝐺)) |
9 | | eqid 2725 |
. . . . . . 7
⊢
(LIdeal‘𝐺) =
(LIdeal‘𝐺) |
10 | 9 | crng2idl 21188 |
. . . . . 6
⊢ (𝐺 ∈ CRing →
(LIdeal‘𝐺) =
(2Ideal‘𝐺)) |
11 | 6, 10 | syl 17 |
. . . . 5
⊢ (𝜑 → (LIdeal‘𝐺) = (2Ideal‘𝐺)) |
12 | 8, 11 | eleqtrd 2827 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (2Ideal‘𝐺)) |
13 | | rhmqusnsg.q |
. . . . 5
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
14 | | eqid 2725 |
. . . . 5
⊢
(2Ideal‘𝐺) =
(2Ideal‘𝐺) |
15 | | eqid 2725 |
. . . . 5
⊢
(1r‘𝐺) = (1r‘𝐺) |
16 | 13, 14, 15 | qus1 21181 |
. . . 4
⊢ ((𝐺 ∈ Ring ∧ 𝑁 ∈ (2Ideal‘𝐺)) → (𝑄 ∈ Ring ∧
[(1r‘𝐺)](𝐺 ~QG 𝑁) = (1r‘𝑄))) |
17 | 7, 12, 16 | syl2anc 582 |
. . 3
⊢ (𝜑 → (𝑄 ∈ Ring ∧
[(1r‘𝐺)](𝐺 ~QG 𝑁) = (1r‘𝑄))) |
18 | 17 | simpld 493 |
. 2
⊢ (𝜑 → 𝑄 ∈ Ring) |
19 | | rhmqusnsg.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝐺 RingHom 𝐻)) |
20 | | rhmrcl2 20428 |
. . 3
⊢ (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐻 ∈ Ring) |
21 | 19, 20 | syl 17 |
. 2
⊢ (𝜑 → 𝐻 ∈ Ring) |
22 | | rhmqusnsg.0 |
. . . 4
⊢ 0 =
(0g‘𝐻) |
23 | | rhmghm 20435 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
24 | 19, 23 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
25 | | rhmqusnsg.k |
. . . 4
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
26 | | rhmqusnsg.j |
. . . 4
⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪
(𝐹 “ 𝑞)) |
27 | | rhmqusnsg.n |
. . . 4
⊢ (𝜑 → 𝑁 ⊆ 𝐾) |
28 | | lidlnsg 21155 |
. . . . 5
⊢ ((𝐺 ∈ Ring ∧ 𝑁 ∈ (LIdeal‘𝐺)) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
29 | 7, 8, 28 | syl2anc 582 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
30 | | eqid 2725 |
. . . . . 6
⊢
(Base‘𝐺) =
(Base‘𝐺) |
31 | 30, 15 | ringidcl 20214 |
. . . . 5
⊢ (𝐺 ∈ Ring →
(1r‘𝐺)
∈ (Base‘𝐺)) |
32 | 7, 31 | syl 17 |
. . . 4
⊢ (𝜑 → (1r‘𝐺) ∈ (Base‘𝐺)) |
33 | 22, 24, 25, 13, 26, 27, 29, 32 | ghmqusnsglem1 19243 |
. . 3
⊢ (𝜑 → (𝐽‘[(1r‘𝐺)](𝐺 ~QG 𝑁)) = (𝐹‘(1r‘𝐺))) |
34 | 17 | simprd 494 |
. . . 4
⊢ (𝜑 →
[(1r‘𝐺)](𝐺 ~QG 𝑁) = (1r‘𝑄)) |
35 | 34 | fveq2d 6900 |
. . 3
⊢ (𝜑 → (𝐽‘[(1r‘𝐺)](𝐺 ~QG 𝑁)) = (𝐽‘(1r‘𝑄))) |
36 | 15, 3 | rhm1 20440 |
. . . 4
⊢ (𝐹 ∈ (𝐺 RingHom 𝐻) → (𝐹‘(1r‘𝐺)) = (1r‘𝐻)) |
37 | 19, 36 | syl 17 |
. . 3
⊢ (𝜑 → (𝐹‘(1r‘𝐺)) = (1r‘𝐻)) |
38 | 33, 35, 37 | 3eqtr3d 2773 |
. 2
⊢ (𝜑 → (𝐽‘(1r‘𝑄)) = (1r‘𝐻)) |
39 | 19 | ad6antr 734 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝐹 ∈ (𝐺 RingHom 𝐻)) |
40 | 13 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))) |
41 | | eqidd 2726 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
42 | | ovexd 7454 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 ~QG 𝑁) ∈ V) |
43 | 40, 41, 42, 6 | qusbas 17530 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄)) |
44 | | nsgsubg 19121 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) |
45 | | eqid 2725 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁) |
46 | 30, 45 | eqger 19141 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er (Base‘𝐺)) |
47 | 29, 44, 46 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 ~QG 𝑁) Er (Base‘𝐺)) |
48 | 47 | qsss 8797 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ⊆ 𝒫 (Base‘𝐺)) |
49 | 43, 48 | eqsstrrd 4016 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝑄) ⊆ 𝒫
(Base‘𝐺)) |
50 | 49 | sselda 3976 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺)) |
51 | 50 | elpwid 4613 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺)) |
52 | 51 | ad5antr 732 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 ⊆ (Base‘𝐺)) |
53 | | simp-4r 782 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑥 ∈ 𝑟) |
54 | 52, 53 | sseldd 3977 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑥 ∈ (Base‘𝐺)) |
55 | 49 | sselda 3976 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ∈ 𝒫 (Base‘𝐺)) |
56 | 55 | elpwid 4613 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺)) |
57 | 56 | adantlr 713 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺)) |
58 | 57 | ad4antr 730 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 ⊆ (Base‘𝐺)) |
59 | | simplr 767 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑦 ∈ 𝑠) |
60 | 58, 59 | sseldd 3977 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑦 ∈ (Base‘𝐺)) |
61 | | eqid 2725 |
. . . . . . . 8
⊢
(.r‘𝐺) = (.r‘𝐺) |
62 | 30, 61, 5 | rhmmul 20437 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐺 RingHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(.r‘𝐺)𝑦)) = ((𝐹‘𝑥)(.r‘𝐻)(𝐹‘𝑦))) |
63 | 39, 54, 60, 62 | syl3anc 1368 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐹‘(𝑥(.r‘𝐺)𝑦)) = ((𝐹‘𝑥)(.r‘𝐻)(𝐹‘𝑦))) |
64 | 47 | ad6antr 734 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐺 ~QG 𝑁) Er (Base‘𝐺)) |
65 | | simp-6r 786 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 ∈ (Base‘𝑄)) |
66 | 43 | ad6antr 734 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄)) |
67 | 65, 66 | eleqtrrd 2828 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁))) |
68 | | qsel 8815 |
. . . . . . . . . . 11
⊢ (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ∧ 𝑥 ∈ 𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝑁)) |
69 | 64, 67, 53, 68 | syl3anc 1368 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 = [𝑥](𝐺 ~QG 𝑁)) |
70 | | simp-5r 784 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 ∈ (Base‘𝑄)) |
71 | 70, 66 | eleqtrrd 2828 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁))) |
72 | | qsel 8815 |
. . . . . . . . . . 11
⊢ (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ∧ 𝑦 ∈ 𝑠) → 𝑠 = [𝑦](𝐺 ~QG 𝑁)) |
73 | 64, 71, 59, 72 | syl3anc 1368 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 = [𝑦](𝐺 ~QG 𝑁)) |
74 | 69, 73 | oveq12d 7437 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝑟(.r‘𝑄)𝑠) = ([𝑥](𝐺 ~QG 𝑁)(.r‘𝑄)[𝑦](𝐺 ~QG 𝑁))) |
75 | 6 | ad6antr 734 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝐺 ∈ CRing) |
76 | 8 | ad6antr 734 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑁 ∈ (LIdeal‘𝐺)) |
77 | 13, 30, 61, 4, 75, 76, 54, 60 | qusmulcrng 21191 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → ([𝑥](𝐺 ~QG 𝑁)(.r‘𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(.r‘𝐺)𝑦)](𝐺 ~QG 𝑁)) |
78 | 74, 77 | eqtr2d 2766 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → [(𝑥(.r‘𝐺)𝑦)](𝐺 ~QG 𝑁) = (𝑟(.r‘𝑄)𝑠)) |
79 | 78 | fveq2d 6900 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘[(𝑥(.r‘𝐺)𝑦)](𝐺 ~QG 𝑁)) = (𝐽‘(𝑟(.r‘𝑄)𝑠))) |
80 | 39, 23 | syl 17 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
81 | 27 | ad6antr 734 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑁 ⊆ 𝐾) |
82 | 29 | ad6antr 734 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
83 | | rhmrcl1 20427 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐺 ∈ Ring) |
84 | 39, 83 | syl 17 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝐺 ∈ Ring) |
85 | 30, 61, 84, 54, 60 | ringcld 20211 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝑥(.r‘𝐺)𝑦) ∈ (Base‘𝐺)) |
86 | 22, 80, 25, 13, 26, 81, 82, 85 | ghmqusnsglem1 19243 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘[(𝑥(.r‘𝐺)𝑦)](𝐺 ~QG 𝑁)) = (𝐹‘(𝑥(.r‘𝐺)𝑦))) |
87 | 79, 86 | eqtr3d 2767 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘(𝑟(.r‘𝑄)𝑠)) = (𝐹‘(𝑥(.r‘𝐺)𝑦))) |
88 | | simpllr 774 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘𝑟) = (𝐹‘𝑥)) |
89 | | simpr 483 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘𝑠) = (𝐹‘𝑦)) |
90 | 88, 89 | oveq12d 7437 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → ((𝐽‘𝑟)(.r‘𝐻)(𝐽‘𝑠)) = ((𝐹‘𝑥)(.r‘𝐻)(𝐹‘𝑦))) |
91 | 63, 87, 90 | 3eqtr4d 2775 |
. . . . 5
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘(𝑟(.r‘𝑄)𝑠)) = ((𝐽‘𝑟)(.r‘𝐻)(𝐽‘𝑠))) |
92 | 24 | ad4antr 730 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
93 | 27 | ad4antr 730 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑁 ⊆ 𝐾) |
94 | 29 | ad4antr 730 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
95 | | simpllr 774 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑠 ∈ (Base‘𝑄)) |
96 | 22, 92, 25, 13, 26, 93, 94, 95 | ghmqusnsglem2 19244 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → ∃𝑦 ∈ 𝑠 (𝐽‘𝑠) = (𝐹‘𝑦)) |
97 | 91, 96 | r19.29a 3151 |
. . . 4
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘(𝑟(.r‘𝑄)𝑠)) = ((𝐽‘𝑟)(.r‘𝐻)(𝐽‘𝑠))) |
98 | 24 | ad2antrr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
99 | 27 | ad2antrr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑁 ⊆ 𝐾) |
100 | 29 | ad2antrr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
101 | | simplr 767 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄)) |
102 | 22, 98, 25, 13, 26, 99, 100, 101 | ghmqusnsglem2 19244 |
. . . 4
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → ∃𝑥 ∈ 𝑟 (𝐽‘𝑟) = (𝐹‘𝑥)) |
103 | 97, 102 | r19.29a 3151 |
. . 3
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → (𝐽‘(𝑟(.r‘𝑄)𝑠)) = ((𝐽‘𝑟)(.r‘𝐻)(𝐽‘𝑠))) |
104 | 103 | anasss 465 |
. 2
⊢ ((𝜑 ∧ (𝑟 ∈ (Base‘𝑄) ∧ 𝑠 ∈ (Base‘𝑄))) → (𝐽‘(𝑟(.r‘𝑄)𝑠)) = ((𝐽‘𝑟)(.r‘𝐻)(𝐽‘𝑠))) |
105 | 22, 24, 25, 13, 26, 27, 29 | ghmqusnsg 19245 |
. 2
⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpHom 𝐻)) |
106 | 1, 2, 3, 4, 5, 18,
21, 38, 104, 105 | isrhm2d 20438 |
1
⊢ (𝜑 → 𝐽 ∈ (𝑄 RingHom 𝐻)) |