MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmqusnsg Structured version   Visualization version   GIF version

Theorem rhmqusnsg 21192
Description: The mapping 𝐽 induced by a ring homomorphism 𝐹 from a subring 𝑁 of the quotient group 𝑄 over 𝐹's kernel 𝐾 is a ring homomorphism. (Contributed by Thierry Arnoux, 13-May-2025.)
Hypotheses
Ref Expression
rhmqusnsg.0 0 = (0g𝐻)
rhmqusnsg.f (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))
rhmqusnsg.k 𝐾 = (𝐹 “ { 0 })
rhmqusnsg.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
rhmqusnsg.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
rhmqusnsg.g (𝜑𝐺 ∈ CRing)
rhmqusnsg.n (𝜑𝑁𝐾)
rhmqusnsg.1 (𝜑𝑁 ∈ (LIdeal‘𝐺))
Assertion
Ref Expression
rhmqusnsg (𝜑𝐽 ∈ (𝑄 RingHom 𝐻))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑁,𝑞   𝑄,𝑞   𝜑,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem rhmqusnsg
Dummy variables 𝑟 𝑥 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . 2 (Base‘𝑄) = (Base‘𝑄)
2 eqid 2725 . 2 (1r𝑄) = (1r𝑄)
3 eqid 2725 . 2 (1r𝐻) = (1r𝐻)
4 eqid 2725 . 2 (.r𝑄) = (.r𝑄)
5 eqid 2725 . 2 (.r𝐻) = (.r𝐻)
6 rhmqusnsg.g . . . . 5 (𝜑𝐺 ∈ CRing)
76crngringd 20198 . . . 4 (𝜑𝐺 ∈ Ring)
8 rhmqusnsg.1 . . . . 5 (𝜑𝑁 ∈ (LIdeal‘𝐺))
9 eqid 2725 . . . . . . 7 (LIdeal‘𝐺) = (LIdeal‘𝐺)
109crng2idl 21188 . . . . . 6 (𝐺 ∈ CRing → (LIdeal‘𝐺) = (2Ideal‘𝐺))
116, 10syl 17 . . . . 5 (𝜑 → (LIdeal‘𝐺) = (2Ideal‘𝐺))
128, 11eleqtrd 2827 . . . 4 (𝜑𝑁 ∈ (2Ideal‘𝐺))
13 rhmqusnsg.q . . . . 5 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
14 eqid 2725 . . . . 5 (2Ideal‘𝐺) = (2Ideal‘𝐺)
15 eqid 2725 . . . . 5 (1r𝐺) = (1r𝐺)
1613, 14, 15qus1 21181 . . . 4 ((𝐺 ∈ Ring ∧ 𝑁 ∈ (2Ideal‘𝐺)) → (𝑄 ∈ Ring ∧ [(1r𝐺)](𝐺 ~QG 𝑁) = (1r𝑄)))
177, 12, 16syl2anc 582 . . 3 (𝜑 → (𝑄 ∈ Ring ∧ [(1r𝐺)](𝐺 ~QG 𝑁) = (1r𝑄)))
1817simpld 493 . 2 (𝜑𝑄 ∈ Ring)
19 rhmqusnsg.f . . 3 (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))
20 rhmrcl2 20428 . . 3 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐻 ∈ Ring)
2119, 20syl 17 . 2 (𝜑𝐻 ∈ Ring)
22 rhmqusnsg.0 . . . 4 0 = (0g𝐻)
23 rhmghm 20435 . . . . 5 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
2419, 23syl 17 . . . 4 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
25 rhmqusnsg.k . . . 4 𝐾 = (𝐹 “ { 0 })
26 rhmqusnsg.j . . . 4 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
27 rhmqusnsg.n . . . 4 (𝜑𝑁𝐾)
28 lidlnsg 21155 . . . . 5 ((𝐺 ∈ Ring ∧ 𝑁 ∈ (LIdeal‘𝐺)) → 𝑁 ∈ (NrmSGrp‘𝐺))
297, 8, 28syl2anc 582 . . . 4 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
30 eqid 2725 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
3130, 15ringidcl 20214 . . . . 5 (𝐺 ∈ Ring → (1r𝐺) ∈ (Base‘𝐺))
327, 31syl 17 . . . 4 (𝜑 → (1r𝐺) ∈ (Base‘𝐺))
3322, 24, 25, 13, 26, 27, 29, 32ghmqusnsglem1 19243 . . 3 (𝜑 → (𝐽‘[(1r𝐺)](𝐺 ~QG 𝑁)) = (𝐹‘(1r𝐺)))
3417simprd 494 . . . 4 (𝜑 → [(1r𝐺)](𝐺 ~QG 𝑁) = (1r𝑄))
3534fveq2d 6900 . . 3 (𝜑 → (𝐽‘[(1r𝐺)](𝐺 ~QG 𝑁)) = (𝐽‘(1r𝑄)))
3615, 3rhm1 20440 . . . 4 (𝐹 ∈ (𝐺 RingHom 𝐻) → (𝐹‘(1r𝐺)) = (1r𝐻))
3719, 36syl 17 . . 3 (𝜑 → (𝐹‘(1r𝐺)) = (1r𝐻))
3833, 35, 373eqtr3d 2773 . 2 (𝜑 → (𝐽‘(1r𝑄)) = (1r𝐻))
3919ad6antr 734 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐹 ∈ (𝐺 RingHom 𝐻))
4013a1i 11 . . . . . . . . . . . . 13 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
41 eqidd 2726 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
42 ovexd 7454 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ~QG 𝑁) ∈ V)
4340, 41, 42, 6qusbas 17530 . . . . . . . . . . . 12 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
44 nsgsubg 19121 . . . . . . . . . . . . . 14 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
45 eqid 2725 . . . . . . . . . . . . . . 15 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
4630, 45eqger 19141 . . . . . . . . . . . . . 14 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
4729, 44, 463syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
4847qsss 8797 . . . . . . . . . . . 12 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ⊆ 𝒫 (Base‘𝐺))
4943, 48eqsstrrd 4016 . . . . . . . . . . 11 (𝜑 → (Base‘𝑄) ⊆ 𝒫 (Base‘𝐺))
5049sselda 3976 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺))
5150elpwid 4613 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺))
5251ad5antr 732 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ⊆ (Base‘𝐺))
53 simp-4r 782 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑥𝑟)
5452, 53sseldd 3977 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑥 ∈ (Base‘𝐺))
5549sselda 3976 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (Base‘𝑄)) → 𝑠 ∈ 𝒫 (Base‘𝐺))
5655elpwid 4613 . . . . . . . . . 10 ((𝜑𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺))
5756adantlr 713 . . . . . . . . 9 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺))
5857ad4antr 730 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ⊆ (Base‘𝐺))
59 simplr 767 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑦𝑠)
6058, 59sseldd 3977 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑦 ∈ (Base‘𝐺))
61 eqid 2725 . . . . . . . 8 (.r𝐺) = (.r𝐺)
6230, 61, 5rhmmul 20437 . . . . . . 7 ((𝐹 ∈ (𝐺 RingHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(.r𝐺)𝑦)) = ((𝐹𝑥)(.r𝐻)(𝐹𝑦)))
6339, 54, 60, 62syl3anc 1368 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐹‘(𝑥(.r𝐺)𝑦)) = ((𝐹𝑥)(.r𝐻)(𝐹𝑦)))
6447ad6antr 734 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
65 simp-6r 786 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ∈ (Base‘𝑄))
6643ad6antr 734 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
6765, 66eleqtrrd 2828 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)))
68 qsel 8815 . . . . . . . . . . 11 (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ∧ 𝑥𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝑁))
6964, 67, 53, 68syl3anc 1368 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 = [𝑥](𝐺 ~QG 𝑁))
70 simp-5r 784 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ∈ (Base‘𝑄))
7170, 66eleqtrrd 2828 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)))
72 qsel 8815 . . . . . . . . . . 11 (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ∧ 𝑦𝑠) → 𝑠 = [𝑦](𝐺 ~QG 𝑁))
7364, 71, 59, 72syl3anc 1368 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 = [𝑦](𝐺 ~QG 𝑁))
7469, 73oveq12d 7437 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑟(.r𝑄)𝑠) = ([𝑥](𝐺 ~QG 𝑁)(.r𝑄)[𝑦](𝐺 ~QG 𝑁)))
756ad6antr 734 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐺 ∈ CRing)
768ad6antr 734 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑁 ∈ (LIdeal‘𝐺))
7713, 30, 61, 4, 75, 76, 54, 60qusmulcrng 21191 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ([𝑥](𝐺 ~QG 𝑁)(.r𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(.r𝐺)𝑦)](𝐺 ~QG 𝑁))
7874, 77eqtr2d 2766 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → [(𝑥(.r𝐺)𝑦)](𝐺 ~QG 𝑁) = (𝑟(.r𝑄)𝑠))
7978fveq2d 6900 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘[(𝑥(.r𝐺)𝑦)](𝐺 ~QG 𝑁)) = (𝐽‘(𝑟(.r𝑄)𝑠)))
8039, 23syl 17 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
8127ad6antr 734 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑁𝐾)
8229ad6antr 734 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑁 ∈ (NrmSGrp‘𝐺))
83 rhmrcl1 20427 . . . . . . . . . 10 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐺 ∈ Ring)
8439, 83syl 17 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐺 ∈ Ring)
8530, 61, 84, 54, 60ringcld 20211 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑥(.r𝐺)𝑦) ∈ (Base‘𝐺))
8622, 80, 25, 13, 26, 81, 82, 85ghmqusnsglem1 19243 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘[(𝑥(.r𝐺)𝑦)](𝐺 ~QG 𝑁)) = (𝐹‘(𝑥(.r𝐺)𝑦)))
8779, 86eqtr3d 2767 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(.r𝑄)𝑠)) = (𝐹‘(𝑥(.r𝐺)𝑦)))
88 simpllr 774 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽𝑟) = (𝐹𝑥))
89 simpr 483 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽𝑠) = (𝐹𝑦))
9088, 89oveq12d 7437 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ((𝐽𝑟)(.r𝐻)(𝐽𝑠)) = ((𝐹𝑥)(.r𝐻)(𝐹𝑦)))
9163, 87, 903eqtr4d 2775 . . . . 5 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(.r𝑄)𝑠)) = ((𝐽𝑟)(.r𝐻)(𝐽𝑠)))
9224ad4antr 730 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
9327ad4antr 730 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑁𝐾)
9429ad4antr 730 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑁 ∈ (NrmSGrp‘𝐺))
95 simpllr 774 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑠 ∈ (Base‘𝑄))
9622, 92, 25, 13, 26, 93, 94, 95ghmqusnsglem2 19244 . . . . 5 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ∃𝑦𝑠 (𝐽𝑠) = (𝐹𝑦))
9791, 96r19.29a 3151 . . . 4 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑟(.r𝑄)𝑠)) = ((𝐽𝑟)(.r𝐻)(𝐽𝑠)))
9824ad2antrr 724 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
9927ad2antrr 724 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑁𝐾)
10029ad2antrr 724 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑁 ∈ (NrmSGrp‘𝐺))
101 simplr 767 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄))
10222, 98, 25, 13, 26, 99, 100, 101ghmqusnsglem2 19244 . . . 4 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
10397, 102r19.29a 3151 . . 3 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → (𝐽‘(𝑟(.r𝑄)𝑠)) = ((𝐽𝑟)(.r𝐻)(𝐽𝑠)))
104103anasss 465 . 2 ((𝜑 ∧ (𝑟 ∈ (Base‘𝑄) ∧ 𝑠 ∈ (Base‘𝑄))) → (𝐽‘(𝑟(.r𝑄)𝑠)) = ((𝐽𝑟)(.r𝐻)(𝐽𝑠)))
10522, 24, 25, 13, 26, 27, 29ghmqusnsg 19245 . 2 (𝜑𝐽 ∈ (𝑄 GrpHom 𝐻))
1061, 2, 3, 4, 5, 18, 21, 38, 104, 105isrhm2d 20438 1 (𝜑𝐽 ∈ (𝑄 RingHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  wss 3944  𝒫 cpw 4604  {csn 4630   cuni 4909  cmpt 5232  ccnv 5677  cima 5681  cfv 6549  (class class class)co 7419   Er wer 8722  [cec 8723   / cqs 8724  Basecbs 17183  .rcmulr 17237  0gc0g 17424   /s cqus 17490  SubGrpcsubg 19083  NrmSGrpcnsg 19084   ~QG cqg 19085   GrpHom cghm 19175  1rcur 20133  Ringcrg 20185  CRingccrg 20186   RingHom crh 20420  LIdealclidl 21114  2Idealc2idl 21156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-ec 8727  df-qs 8731  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-0g 17426  df-imas 17493  df-qus 17494  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-nsg 19087  df-eqg 19088  df-ghm 19176  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-oppr 20285  df-rhm 20423  df-subrg 20520  df-lmod 20757  df-lss 20828  df-lsp 20868  df-sra 21070  df-rgmod 21071  df-lidl 21116  df-rsp 21117  df-2idl 21157
This theorem is referenced by:  zndvdchrrhm  41573  rhmqusspan  41788
  Copyright terms: Public domain W3C validator