MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmqusnsg Structured version   Visualization version   GIF version

Theorem rhmqusnsg 21318
Description: The mapping 𝐽 induced by a ring homomorphism 𝐹 from a subring 𝑁 of the quotient group 𝑄 over 𝐹's kernel 𝐾 is a ring homomorphism. (Contributed by Thierry Arnoux, 13-May-2025.)
Hypotheses
Ref Expression
rhmqusnsg.0 0 = (0g𝐻)
rhmqusnsg.f (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))
rhmqusnsg.k 𝐾 = (𝐹 “ { 0 })
rhmqusnsg.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
rhmqusnsg.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
rhmqusnsg.g (𝜑𝐺 ∈ CRing)
rhmqusnsg.n (𝜑𝑁𝐾)
rhmqusnsg.1 (𝜑𝑁 ∈ (LIdeal‘𝐺))
Assertion
Ref Expression
rhmqusnsg (𝜑𝐽 ∈ (𝑄 RingHom 𝐻))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑁,𝑞   𝑄,𝑞   𝜑,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem rhmqusnsg
Dummy variables 𝑟 𝑥 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . 2 (Base‘𝑄) = (Base‘𝑄)
2 eqid 2740 . 2 (1r𝑄) = (1r𝑄)
3 eqid 2740 . 2 (1r𝐻) = (1r𝐻)
4 eqid 2740 . 2 (.r𝑄) = (.r𝑄)
5 eqid 2740 . 2 (.r𝐻) = (.r𝐻)
6 rhmqusnsg.g . . . . 5 (𝜑𝐺 ∈ CRing)
76crngringd 20273 . . . 4 (𝜑𝐺 ∈ Ring)
8 rhmqusnsg.1 . . . . 5 (𝜑𝑁 ∈ (LIdeal‘𝐺))
9 eqid 2740 . . . . . . 7 (LIdeal‘𝐺) = (LIdeal‘𝐺)
109crng2idl 21314 . . . . . 6 (𝐺 ∈ CRing → (LIdeal‘𝐺) = (2Ideal‘𝐺))
116, 10syl 17 . . . . 5 (𝜑 → (LIdeal‘𝐺) = (2Ideal‘𝐺))
128, 11eleqtrd 2846 . . . 4 (𝜑𝑁 ∈ (2Ideal‘𝐺))
13 rhmqusnsg.q . . . . 5 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
14 eqid 2740 . . . . 5 (2Ideal‘𝐺) = (2Ideal‘𝐺)
15 eqid 2740 . . . . 5 (1r𝐺) = (1r𝐺)
1613, 14, 15qus1 21307 . . . 4 ((𝐺 ∈ Ring ∧ 𝑁 ∈ (2Ideal‘𝐺)) → (𝑄 ∈ Ring ∧ [(1r𝐺)](𝐺 ~QG 𝑁) = (1r𝑄)))
177, 12, 16syl2anc 583 . . 3 (𝜑 → (𝑄 ∈ Ring ∧ [(1r𝐺)](𝐺 ~QG 𝑁) = (1r𝑄)))
1817simpld 494 . 2 (𝜑𝑄 ∈ Ring)
19 rhmqusnsg.f . . 3 (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))
20 rhmrcl2 20503 . . 3 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐻 ∈ Ring)
2119, 20syl 17 . 2 (𝜑𝐻 ∈ Ring)
22 rhmqusnsg.0 . . . 4 0 = (0g𝐻)
23 rhmghm 20510 . . . . 5 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
2419, 23syl 17 . . . 4 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
25 rhmqusnsg.k . . . 4 𝐾 = (𝐹 “ { 0 })
26 rhmqusnsg.j . . . 4 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
27 rhmqusnsg.n . . . 4 (𝜑𝑁𝐾)
28 lidlnsg 21281 . . . . 5 ((𝐺 ∈ Ring ∧ 𝑁 ∈ (LIdeal‘𝐺)) → 𝑁 ∈ (NrmSGrp‘𝐺))
297, 8, 28syl2anc 583 . . . 4 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
30 eqid 2740 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
3130, 15ringidcl 20289 . . . . 5 (𝐺 ∈ Ring → (1r𝐺) ∈ (Base‘𝐺))
327, 31syl 17 . . . 4 (𝜑 → (1r𝐺) ∈ (Base‘𝐺))
3322, 24, 25, 13, 26, 27, 29, 32ghmqusnsglem1 19320 . . 3 (𝜑 → (𝐽‘[(1r𝐺)](𝐺 ~QG 𝑁)) = (𝐹‘(1r𝐺)))
3417simprd 495 . . . 4 (𝜑 → [(1r𝐺)](𝐺 ~QG 𝑁) = (1r𝑄))
3534fveq2d 6924 . . 3 (𝜑 → (𝐽‘[(1r𝐺)](𝐺 ~QG 𝑁)) = (𝐽‘(1r𝑄)))
3615, 3rhm1 20515 . . . 4 (𝐹 ∈ (𝐺 RingHom 𝐻) → (𝐹‘(1r𝐺)) = (1r𝐻))
3719, 36syl 17 . . 3 (𝜑 → (𝐹‘(1r𝐺)) = (1r𝐻))
3833, 35, 373eqtr3d 2788 . 2 (𝜑 → (𝐽‘(1r𝑄)) = (1r𝐻))
3919ad6antr 735 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐹 ∈ (𝐺 RingHom 𝐻))
4013a1i 11 . . . . . . . . . . . . 13 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
41 eqidd 2741 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
42 ovexd 7483 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ~QG 𝑁) ∈ V)
4340, 41, 42, 6qusbas 17605 . . . . . . . . . . . 12 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
44 nsgsubg 19198 . . . . . . . . . . . . . 14 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
45 eqid 2740 . . . . . . . . . . . . . . 15 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
4630, 45eqger 19218 . . . . . . . . . . . . . 14 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
4729, 44, 463syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
4847qsss 8836 . . . . . . . . . . . 12 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ⊆ 𝒫 (Base‘𝐺))
4943, 48eqsstrrd 4048 . . . . . . . . . . 11 (𝜑 → (Base‘𝑄) ⊆ 𝒫 (Base‘𝐺))
5049sselda 4008 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺))
5150elpwid 4631 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺))
5251ad5antr 733 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ⊆ (Base‘𝐺))
53 simp-4r 783 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑥𝑟)
5452, 53sseldd 4009 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑥 ∈ (Base‘𝐺))
5549sselda 4008 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (Base‘𝑄)) → 𝑠 ∈ 𝒫 (Base‘𝐺))
5655elpwid 4631 . . . . . . . . . 10 ((𝜑𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺))
5756adantlr 714 . . . . . . . . 9 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺))
5857ad4antr 731 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ⊆ (Base‘𝐺))
59 simplr 768 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑦𝑠)
6058, 59sseldd 4009 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑦 ∈ (Base‘𝐺))
61 eqid 2740 . . . . . . . 8 (.r𝐺) = (.r𝐺)
6230, 61, 5rhmmul 20512 . . . . . . 7 ((𝐹 ∈ (𝐺 RingHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(.r𝐺)𝑦)) = ((𝐹𝑥)(.r𝐻)(𝐹𝑦)))
6339, 54, 60, 62syl3anc 1371 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐹‘(𝑥(.r𝐺)𝑦)) = ((𝐹𝑥)(.r𝐻)(𝐹𝑦)))
6447ad6antr 735 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
65 simp-6r 787 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ∈ (Base‘𝑄))
6643ad6antr 735 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
6765, 66eleqtrrd 2847 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)))
68 qsel 8854 . . . . . . . . . . 11 (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ∧ 𝑥𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝑁))
6964, 67, 53, 68syl3anc 1371 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 = [𝑥](𝐺 ~QG 𝑁))
70 simp-5r 785 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ∈ (Base‘𝑄))
7170, 66eleqtrrd 2847 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)))
72 qsel 8854 . . . . . . . . . . 11 (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ∧ 𝑦𝑠) → 𝑠 = [𝑦](𝐺 ~QG 𝑁))
7364, 71, 59, 72syl3anc 1371 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 = [𝑦](𝐺 ~QG 𝑁))
7469, 73oveq12d 7466 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑟(.r𝑄)𝑠) = ([𝑥](𝐺 ~QG 𝑁)(.r𝑄)[𝑦](𝐺 ~QG 𝑁)))
756ad6antr 735 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐺 ∈ CRing)
768ad6antr 735 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑁 ∈ (LIdeal‘𝐺))
7713, 30, 61, 4, 75, 76, 54, 60qusmulcrng 21317 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ([𝑥](𝐺 ~QG 𝑁)(.r𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(.r𝐺)𝑦)](𝐺 ~QG 𝑁))
7874, 77eqtr2d 2781 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → [(𝑥(.r𝐺)𝑦)](𝐺 ~QG 𝑁) = (𝑟(.r𝑄)𝑠))
7978fveq2d 6924 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘[(𝑥(.r𝐺)𝑦)](𝐺 ~QG 𝑁)) = (𝐽‘(𝑟(.r𝑄)𝑠)))
8039, 23syl 17 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
8127ad6antr 735 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑁𝐾)
8229ad6antr 735 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑁 ∈ (NrmSGrp‘𝐺))
83 rhmrcl1 20502 . . . . . . . . . 10 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐺 ∈ Ring)
8439, 83syl 17 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐺 ∈ Ring)
8530, 61, 84, 54, 60ringcld 20286 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑥(.r𝐺)𝑦) ∈ (Base‘𝐺))
8622, 80, 25, 13, 26, 81, 82, 85ghmqusnsglem1 19320 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘[(𝑥(.r𝐺)𝑦)](𝐺 ~QG 𝑁)) = (𝐹‘(𝑥(.r𝐺)𝑦)))
8779, 86eqtr3d 2782 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(.r𝑄)𝑠)) = (𝐹‘(𝑥(.r𝐺)𝑦)))
88 simpllr 775 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽𝑟) = (𝐹𝑥))
89 simpr 484 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽𝑠) = (𝐹𝑦))
9088, 89oveq12d 7466 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ((𝐽𝑟)(.r𝐻)(𝐽𝑠)) = ((𝐹𝑥)(.r𝐻)(𝐹𝑦)))
9163, 87, 903eqtr4d 2790 . . . . 5 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(.r𝑄)𝑠)) = ((𝐽𝑟)(.r𝐻)(𝐽𝑠)))
9224ad4antr 731 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
9327ad4antr 731 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑁𝐾)
9429ad4antr 731 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑁 ∈ (NrmSGrp‘𝐺))
95 simpllr 775 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑠 ∈ (Base‘𝑄))
9622, 92, 25, 13, 26, 93, 94, 95ghmqusnsglem2 19321 . . . . 5 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ∃𝑦𝑠 (𝐽𝑠) = (𝐹𝑦))
9791, 96r19.29a 3168 . . . 4 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑟(.r𝑄)𝑠)) = ((𝐽𝑟)(.r𝐻)(𝐽𝑠)))
9824ad2antrr 725 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
9927ad2antrr 725 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑁𝐾)
10029ad2antrr 725 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑁 ∈ (NrmSGrp‘𝐺))
101 simplr 768 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄))
10222, 98, 25, 13, 26, 99, 100, 101ghmqusnsglem2 19321 . . . 4 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
10397, 102r19.29a 3168 . . 3 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → (𝐽‘(𝑟(.r𝑄)𝑠)) = ((𝐽𝑟)(.r𝐻)(𝐽𝑠)))
104103anasss 466 . 2 ((𝜑 ∧ (𝑟 ∈ (Base‘𝑄) ∧ 𝑠 ∈ (Base‘𝑄))) → (𝐽‘(𝑟(.r𝑄)𝑠)) = ((𝐽𝑟)(.r𝐻)(𝐽𝑠)))
10522, 24, 25, 13, 26, 27, 29ghmqusnsg 19322 . 2 (𝜑𝐽 ∈ (𝑄 GrpHom 𝐻))
1061, 2, 3, 4, 5, 18, 21, 38, 104, 105isrhm2d 20513 1 (𝜑𝐽 ∈ (𝑄 RingHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  𝒫 cpw 4622  {csn 4648   cuni 4931  cmpt 5249  ccnv 5699  cima 5703  cfv 6573  (class class class)co 7448   Er wer 8760  [cec 8761   / cqs 8762  Basecbs 17258  .rcmulr 17312  0gc0g 17499   /s cqus 17565  SubGrpcsubg 19160  NrmSGrpcnsg 19161   ~QG cqg 19162   GrpHom cghm 19252  1rcur 20208  Ringcrg 20260  CRingccrg 20261   RingHom crh 20495  LIdealclidl 21239  2Idealc2idl 21282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-rhm 20498  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283
This theorem is referenced by:  zndvdchrrhm  41927  rhmqusspan  42142
  Copyright terms: Public domain W3C validator