| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. 2
⊢
(Base‘𝑄) =
(Base‘𝑄) |
| 2 | | eqid 2736 |
. 2
⊢
(1r‘𝑄) = (1r‘𝑄) |
| 3 | | eqid 2736 |
. 2
⊢
(1r‘𝐻) = (1r‘𝐻) |
| 4 | | eqid 2736 |
. 2
⊢
(.r‘𝑄) = (.r‘𝑄) |
| 5 | | eqid 2736 |
. 2
⊢
(.r‘𝐻) = (.r‘𝐻) |
| 6 | | rhmqusnsg.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ CRing) |
| 7 | 6 | crngringd 20211 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ Ring) |
| 8 | | rhmqusnsg.1 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (LIdeal‘𝐺)) |
| 9 | | eqid 2736 |
. . . . . . 7
⊢
(LIdeal‘𝐺) =
(LIdeal‘𝐺) |
| 10 | 9 | crng2idl 21247 |
. . . . . 6
⊢ (𝐺 ∈ CRing →
(LIdeal‘𝐺) =
(2Ideal‘𝐺)) |
| 11 | 6, 10 | syl 17 |
. . . . 5
⊢ (𝜑 → (LIdeal‘𝐺) = (2Ideal‘𝐺)) |
| 12 | 8, 11 | eleqtrd 2837 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (2Ideal‘𝐺)) |
| 13 | | rhmqusnsg.q |
. . . . 5
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
| 14 | | eqid 2736 |
. . . . 5
⊢
(2Ideal‘𝐺) =
(2Ideal‘𝐺) |
| 15 | | eqid 2736 |
. . . . 5
⊢
(1r‘𝐺) = (1r‘𝐺) |
| 16 | 13, 14, 15 | qus1 21240 |
. . . 4
⊢ ((𝐺 ∈ Ring ∧ 𝑁 ∈ (2Ideal‘𝐺)) → (𝑄 ∈ Ring ∧
[(1r‘𝐺)](𝐺 ~QG 𝑁) = (1r‘𝑄))) |
| 17 | 7, 12, 16 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑄 ∈ Ring ∧
[(1r‘𝐺)](𝐺 ~QG 𝑁) = (1r‘𝑄))) |
| 18 | 17 | simpld 494 |
. 2
⊢ (𝜑 → 𝑄 ∈ Ring) |
| 19 | | rhmqusnsg.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝐺 RingHom 𝐻)) |
| 20 | | rhmrcl2 20442 |
. . 3
⊢ (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐻 ∈ Ring) |
| 21 | 19, 20 | syl 17 |
. 2
⊢ (𝜑 → 𝐻 ∈ Ring) |
| 22 | | rhmqusnsg.0 |
. . . 4
⊢ 0 =
(0g‘𝐻) |
| 23 | | rhmghm 20449 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 24 | 19, 23 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 25 | | rhmqusnsg.k |
. . . 4
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
| 26 | | rhmqusnsg.j |
. . . 4
⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪
(𝐹 “ 𝑞)) |
| 27 | | rhmqusnsg.n |
. . . 4
⊢ (𝜑 → 𝑁 ⊆ 𝐾) |
| 28 | | lidlnsg 21214 |
. . . . 5
⊢ ((𝐺 ∈ Ring ∧ 𝑁 ∈ (LIdeal‘𝐺)) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
| 29 | 7, 8, 28 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
| 30 | | eqid 2736 |
. . . . . 6
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 31 | 30, 15 | ringidcl 20230 |
. . . . 5
⊢ (𝐺 ∈ Ring →
(1r‘𝐺)
∈ (Base‘𝐺)) |
| 32 | 7, 31 | syl 17 |
. . . 4
⊢ (𝜑 → (1r‘𝐺) ∈ (Base‘𝐺)) |
| 33 | 22, 24, 25, 13, 26, 27, 29, 32 | ghmqusnsglem1 19268 |
. . 3
⊢ (𝜑 → (𝐽‘[(1r‘𝐺)](𝐺 ~QG 𝑁)) = (𝐹‘(1r‘𝐺))) |
| 34 | 17 | simprd 495 |
. . . 4
⊢ (𝜑 →
[(1r‘𝐺)](𝐺 ~QG 𝑁) = (1r‘𝑄)) |
| 35 | 34 | fveq2d 6885 |
. . 3
⊢ (𝜑 → (𝐽‘[(1r‘𝐺)](𝐺 ~QG 𝑁)) = (𝐽‘(1r‘𝑄))) |
| 36 | 15, 3 | rhm1 20454 |
. . . 4
⊢ (𝐹 ∈ (𝐺 RingHom 𝐻) → (𝐹‘(1r‘𝐺)) = (1r‘𝐻)) |
| 37 | 19, 36 | syl 17 |
. . 3
⊢ (𝜑 → (𝐹‘(1r‘𝐺)) = (1r‘𝐻)) |
| 38 | 33, 35, 37 | 3eqtr3d 2779 |
. 2
⊢ (𝜑 → (𝐽‘(1r‘𝑄)) = (1r‘𝐻)) |
| 39 | 19 | ad6antr 736 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝐹 ∈ (𝐺 RingHom 𝐻)) |
| 40 | 13 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))) |
| 41 | | eqidd 2737 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
| 42 | | ovexd 7445 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 ~QG 𝑁) ∈ V) |
| 43 | 40, 41, 42, 6 | qusbas 17564 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄)) |
| 44 | | nsgsubg 19146 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) |
| 45 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁) |
| 46 | 30, 45 | eqger 19166 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er (Base‘𝐺)) |
| 47 | 29, 44, 46 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 ~QG 𝑁) Er (Base‘𝐺)) |
| 48 | 47 | qsss 8797 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ⊆ 𝒫 (Base‘𝐺)) |
| 49 | 43, 48 | eqsstrrd 3999 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝑄) ⊆ 𝒫
(Base‘𝐺)) |
| 50 | 49 | sselda 3963 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺)) |
| 51 | 50 | elpwid 4589 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺)) |
| 52 | 51 | ad5antr 734 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 ⊆ (Base‘𝐺)) |
| 53 | | simp-4r 783 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑥 ∈ 𝑟) |
| 54 | 52, 53 | sseldd 3964 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑥 ∈ (Base‘𝐺)) |
| 55 | 49 | sselda 3963 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ∈ 𝒫 (Base‘𝐺)) |
| 56 | 55 | elpwid 4589 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺)) |
| 57 | 56 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺)) |
| 58 | 57 | ad4antr 732 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 ⊆ (Base‘𝐺)) |
| 59 | | simplr 768 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑦 ∈ 𝑠) |
| 60 | 58, 59 | sseldd 3964 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑦 ∈ (Base‘𝐺)) |
| 61 | | eqid 2736 |
. . . . . . . 8
⊢
(.r‘𝐺) = (.r‘𝐺) |
| 62 | 30, 61, 5 | rhmmul 20451 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐺 RingHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(.r‘𝐺)𝑦)) = ((𝐹‘𝑥)(.r‘𝐻)(𝐹‘𝑦))) |
| 63 | 39, 54, 60, 62 | syl3anc 1373 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐹‘(𝑥(.r‘𝐺)𝑦)) = ((𝐹‘𝑥)(.r‘𝐻)(𝐹‘𝑦))) |
| 64 | 47 | ad6antr 736 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐺 ~QG 𝑁) Er (Base‘𝐺)) |
| 65 | | simp-6r 787 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 ∈ (Base‘𝑄)) |
| 66 | 43 | ad6antr 736 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄)) |
| 67 | 65, 66 | eleqtrrd 2838 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁))) |
| 68 | | qsel 8815 |
. . . . . . . . . . 11
⊢ (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ∧ 𝑥 ∈ 𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝑁)) |
| 69 | 64, 67, 53, 68 | syl3anc 1373 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 = [𝑥](𝐺 ~QG 𝑁)) |
| 70 | | simp-5r 785 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 ∈ (Base‘𝑄)) |
| 71 | 70, 66 | eleqtrrd 2838 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁))) |
| 72 | | qsel 8815 |
. . . . . . . . . . 11
⊢ (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)) ∧ 𝑦 ∈ 𝑠) → 𝑠 = [𝑦](𝐺 ~QG 𝑁)) |
| 73 | 64, 71, 59, 72 | syl3anc 1373 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 = [𝑦](𝐺 ~QG 𝑁)) |
| 74 | 69, 73 | oveq12d 7428 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝑟(.r‘𝑄)𝑠) = ([𝑥](𝐺 ~QG 𝑁)(.r‘𝑄)[𝑦](𝐺 ~QG 𝑁))) |
| 75 | 6 | ad6antr 736 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝐺 ∈ CRing) |
| 76 | 8 | ad6antr 736 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑁 ∈ (LIdeal‘𝐺)) |
| 77 | 13, 30, 61, 4, 75, 76, 54, 60 | qusmulcrng 21250 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → ([𝑥](𝐺 ~QG 𝑁)(.r‘𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(.r‘𝐺)𝑦)](𝐺 ~QG 𝑁)) |
| 78 | 74, 77 | eqtr2d 2772 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → [(𝑥(.r‘𝐺)𝑦)](𝐺 ~QG 𝑁) = (𝑟(.r‘𝑄)𝑠)) |
| 79 | 78 | fveq2d 6885 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘[(𝑥(.r‘𝐺)𝑦)](𝐺 ~QG 𝑁)) = (𝐽‘(𝑟(.r‘𝑄)𝑠))) |
| 80 | 39, 23 | syl 17 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 81 | 27 | ad6antr 736 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑁 ⊆ 𝐾) |
| 82 | 29 | ad6antr 736 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
| 83 | | rhmrcl1 20441 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐺 ∈ Ring) |
| 84 | 39, 83 | syl 17 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝐺 ∈ Ring) |
| 85 | 30, 61, 84, 54, 60 | ringcld 20225 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝑥(.r‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 86 | 22, 80, 25, 13, 26, 81, 82, 85 | ghmqusnsglem1 19268 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘[(𝑥(.r‘𝐺)𝑦)](𝐺 ~QG 𝑁)) = (𝐹‘(𝑥(.r‘𝐺)𝑦))) |
| 87 | 79, 86 | eqtr3d 2773 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘(𝑟(.r‘𝑄)𝑠)) = (𝐹‘(𝑥(.r‘𝐺)𝑦))) |
| 88 | | simpllr 775 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘𝑟) = (𝐹‘𝑥)) |
| 89 | | simpr 484 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘𝑠) = (𝐹‘𝑦)) |
| 90 | 88, 89 | oveq12d 7428 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → ((𝐽‘𝑟)(.r‘𝐻)(𝐽‘𝑠)) = ((𝐹‘𝑥)(.r‘𝐻)(𝐹‘𝑦))) |
| 91 | 63, 87, 90 | 3eqtr4d 2781 |
. . . . 5
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘(𝑟(.r‘𝑄)𝑠)) = ((𝐽‘𝑟)(.r‘𝐻)(𝐽‘𝑠))) |
| 92 | 24 | ad4antr 732 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 93 | 27 | ad4antr 732 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑁 ⊆ 𝐾) |
| 94 | 29 | ad4antr 732 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
| 95 | | simpllr 775 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑠 ∈ (Base‘𝑄)) |
| 96 | 22, 92, 25, 13, 26, 93, 94, 95 | ghmqusnsglem2 19269 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → ∃𝑦 ∈ 𝑠 (𝐽‘𝑠) = (𝐹‘𝑦)) |
| 97 | 91, 96 | r19.29a 3149 |
. . . 4
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘(𝑟(.r‘𝑄)𝑠)) = ((𝐽‘𝑟)(.r‘𝐻)(𝐽‘𝑠))) |
| 98 | 24 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 99 | 27 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑁 ⊆ 𝐾) |
| 100 | 29 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
| 101 | | simplr 768 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄)) |
| 102 | 22, 98, 25, 13, 26, 99, 100, 101 | ghmqusnsglem2 19269 |
. . . 4
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → ∃𝑥 ∈ 𝑟 (𝐽‘𝑟) = (𝐹‘𝑥)) |
| 103 | 97, 102 | r19.29a 3149 |
. . 3
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → (𝐽‘(𝑟(.r‘𝑄)𝑠)) = ((𝐽‘𝑟)(.r‘𝐻)(𝐽‘𝑠))) |
| 104 | 103 | anasss 466 |
. 2
⊢ ((𝜑 ∧ (𝑟 ∈ (Base‘𝑄) ∧ 𝑠 ∈ (Base‘𝑄))) → (𝐽‘(𝑟(.r‘𝑄)𝑠)) = ((𝐽‘𝑟)(.r‘𝐻)(𝐽‘𝑠))) |
| 105 | 22, 24, 25, 13, 26, 27, 29 | ghmqusnsg 19270 |
. 2
⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpHom 𝐻)) |
| 106 | 1, 2, 3, 4, 5, 18,
21, 38, 104, 105 | isrhm2d 20452 |
1
⊢ (𝜑 → 𝐽 ∈ (𝑄 RingHom 𝐻)) |