Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualneg Structured version   Visualization version   GIF version

Theorem ldualneg 36391
 Description: The negative of a scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015.)
Hypotheses
Ref Expression
ldualneg.r 𝑅 = (Scalar‘𝑊)
ldualneg.m 𝑀 = (invg𝑅)
ldualneg.d 𝐷 = (LDual‘𝑊)
ldualneg.s 𝑆 = (Scalar‘𝐷)
ldualneg.n 𝑁 = (invg𝑆)
ldualneg.w (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
ldualneg (𝜑𝑁 = 𝑀)

Proof of Theorem ldualneg
StepHypRef Expression
1 ldualneg.r . . . 4 𝑅 = (Scalar‘𝑊)
2 eqid 2824 . . . 4 (oppr𝑅) = (oppr𝑅)
3 ldualneg.d . . . 4 𝐷 = (LDual‘𝑊)
4 ldualneg.s . . . 4 𝑆 = (Scalar‘𝐷)
5 ldualneg.w . . . 4 (𝜑𝑊 ∈ LMod)
61, 2, 3, 4, 5ldualsca 36374 . . 3 (𝜑𝑆 = (oppr𝑅))
76fveq2d 6666 . 2 (𝜑 → (invg𝑆) = (invg‘(oppr𝑅)))
8 ldualneg.n . 2 𝑁 = (invg𝑆)
9 ldualneg.m . . 3 𝑀 = (invg𝑅)
102, 9opprneg 19391 . 2 𝑀 = (invg‘(oppr𝑅))
117, 8, 103eqtr4g 2884 1 (𝜑𝑁 = 𝑀)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2115  ‘cfv 6344  Scalarcsca 16571  invgcminusg 18107  opprcoppr 19378  LModclmod 19637  LDualcld 36365 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7404  df-om 7576  df-1st 7685  df-2nd 7686  df-tpos 7889  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-oadd 8103  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11700  df-3 11701  df-4 11702  df-5 11703  df-6 11704  df-n0 11898  df-z 11982  df-uz 12244  df-fz 12898  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-0g 16718  df-minusg 18110  df-oppr 19379  df-ldual 36366 This theorem is referenced by:  ldualvsubval  36399
 Copyright terms: Public domain W3C validator