![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logleb | Structured version Visualization version GIF version |
Description: Natural logarithm preserves ≤. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
Ref | Expression |
---|---|
logleb | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (log‘𝐴) ≤ (log‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logltb 26622 | . . . 4 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐴 ∈ ℝ+) → (𝐵 < 𝐴 ↔ (log‘𝐵) < (log‘𝐴))) | |
2 | 1 | ancoms 457 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐵 < 𝐴 ↔ (log‘𝐵) < (log‘𝐴))) |
3 | 2 | notbid 317 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (¬ 𝐵 < 𝐴 ↔ ¬ (log‘𝐵) < (log‘𝐴))) |
4 | rpre 13028 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
5 | rpre 13028 | . . 3 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
6 | lenlt 11331 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
7 | 4, 5, 6 | syl2an 594 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
8 | relogcl 26597 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | |
9 | relogcl 26597 | . . 3 ⊢ (𝐵 ∈ ℝ+ → (log‘𝐵) ∈ ℝ) | |
10 | lenlt 11331 | . . 3 ⊢ (((log‘𝐴) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ) → ((log‘𝐴) ≤ (log‘𝐵) ↔ ¬ (log‘𝐵) < (log‘𝐴))) | |
11 | 8, 9, 10 | syl2an 594 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ((log‘𝐴) ≤ (log‘𝐵) ↔ ¬ (log‘𝐵) < (log‘𝐴))) |
12 | 3, 7, 11 | 3bitr4d 310 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (log‘𝐴) ≤ (log‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2099 class class class wbr 5144 ‘cfv 6544 ℝcr 11146 < clt 11287 ≤ cle 11288 ℝ+crp 13020 logclog 26576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-inf2 9675 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 ax-pre-sup 11225 ax-addf 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-iin 4997 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-2o 8487 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9397 df-fi 9445 df-sup 9476 df-inf 9477 df-oi 9544 df-card 9973 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-div 11911 df-nn 12257 df-2 12319 df-3 12320 df-4 12321 df-5 12322 df-6 12323 df-7 12324 df-8 12325 df-9 12326 df-n0 12517 df-z 12603 df-dec 12722 df-uz 12867 df-q 12977 df-rp 13021 df-xneg 13138 df-xadd 13139 df-xmul 13140 df-ioo 13374 df-ioc 13375 df-ico 13376 df-icc 13377 df-fz 13531 df-fzo 13674 df-fl 13804 df-mod 13882 df-seq 14014 df-exp 14074 df-fac 14284 df-bc 14313 df-hash 14341 df-shft 15065 df-cj 15097 df-re 15098 df-im 15099 df-sqrt 15233 df-abs 15234 df-limsup 15466 df-clim 15483 df-rlim 15484 df-sum 15684 df-ef 16062 df-sin 16064 df-cos 16065 df-pi 16067 df-struct 17142 df-sets 17159 df-slot 17177 df-ndx 17189 df-base 17207 df-ress 17236 df-plusg 17272 df-mulr 17273 df-starv 17274 df-sca 17275 df-vsca 17276 df-ip 17277 df-tset 17278 df-ple 17279 df-ds 17281 df-unif 17282 df-hom 17283 df-cco 17284 df-rest 17430 df-topn 17431 df-0g 17449 df-gsum 17450 df-topgen 17451 df-pt 17452 df-prds 17455 df-xrs 17510 df-qtop 17515 df-imas 17516 df-xps 17518 df-mre 17592 df-mrc 17593 df-acs 17595 df-mgm 18626 df-sgrp 18705 df-mnd 18721 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19774 df-psmet 21329 df-xmet 21330 df-met 21331 df-bl 21332 df-mopn 21333 df-fbas 21334 df-fg 21335 df-cnfld 21338 df-top 22882 df-topon 22899 df-topsp 22921 df-bases 22935 df-cld 23009 df-ntr 23010 df-cls 23011 df-nei 23088 df-lp 23126 df-perf 23127 df-cn 23217 df-cnp 23218 df-haus 23305 df-tx 23552 df-hmeo 23745 df-fil 23836 df-fm 23928 df-flim 23929 df-flf 23930 df-xms 24312 df-ms 24313 df-tms 24314 df-cncf 24884 df-limc 25881 df-dv 25882 df-log 26578 |
This theorem is referenced by: logge0 26627 logled 26649 logbleb 26806 harmonicbnd3 27031 harmonicbnd4 27034 vmalelog 27229 logfacubnd 27245 logfacbnd3 27247 logfacrlim 27248 logexprlim 27249 rpvmasumlem 27511 dchrvmasumiflem1 27525 dchrisum0fno1 27535 dchrisum0re 27537 dirith2 27552 mulog2sumlem1 27558 mulog2sumlem2 27559 log2sumbnd 27568 selberg2lem 27574 chpdifbndlem1 27577 chpdifbndlem2 27578 logdivbnd 27580 selberg3lem1 27581 pntpbnd1a 27609 pntlemn 27624 pntlemj 27627 pntlemk 27630 hgt750lem 34508 hgt750lemb 34513 reglogleb 42584 |
Copyright terms: Public domain | W3C validator |