![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logleb | Structured version Visualization version GIF version |
Description: Natural logarithm preserves ≤. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
Ref | Expression |
---|---|
logleb | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (log‘𝐴) ≤ (log‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logltb 24567 | . . . 4 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐴 ∈ ℝ+) → (𝐵 < 𝐴 ↔ (log‘𝐵) < (log‘𝐴))) | |
2 | 1 | ancoms 455 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐵 < 𝐴 ↔ (log‘𝐵) < (log‘𝐴))) |
3 | 2 | notbid 307 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (¬ 𝐵 < 𝐴 ↔ ¬ (log‘𝐵) < (log‘𝐴))) |
4 | rpre 12042 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
5 | rpre 12042 | . . 3 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
6 | lenlt 10318 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
7 | 4, 5, 6 | syl2an 583 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
8 | relogcl 24543 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | |
9 | relogcl 24543 | . . 3 ⊢ (𝐵 ∈ ℝ+ → (log‘𝐵) ∈ ℝ) | |
10 | lenlt 10318 | . . 3 ⊢ (((log‘𝐴) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ) → ((log‘𝐴) ≤ (log‘𝐵) ↔ ¬ (log‘𝐵) < (log‘𝐴))) | |
11 | 8, 9, 10 | syl2an 583 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ((log‘𝐴) ≤ (log‘𝐵) ↔ ¬ (log‘𝐵) < (log‘𝐴))) |
12 | 3, 7, 11 | 3bitr4d 300 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (log‘𝐴) ≤ (log‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∈ wcel 2145 class class class wbr 4786 ‘cfv 6031 ℝcr 10137 < clt 10276 ≤ cle 10277 ℝ+crp 12035 logclog 24522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-fi 8473 df-sup 8504 df-inf 8505 df-oi 8571 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-q 11992 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-ioc 12385 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-fac 13265 df-bc 13294 df-hash 13322 df-shft 14015 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-limsup 14410 df-clim 14427 df-rlim 14428 df-sum 14625 df-ef 15004 df-sin 15006 df-cos 15007 df-pi 15009 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-pt 16313 df-prds 16316 df-xrs 16370 df-qtop 16375 df-imas 16376 df-xps 16378 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-mulg 17749 df-cntz 17957 df-cmn 18402 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-fbas 19958 df-fg 19959 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-ntr 21045 df-cls 21046 df-nei 21123 df-lp 21161 df-perf 21162 df-cn 21252 df-cnp 21253 df-haus 21340 df-tx 21586 df-hmeo 21779 df-fil 21870 df-fm 21962 df-flim 21963 df-flf 21964 df-xms 22345 df-ms 22346 df-tms 22347 df-cncf 22901 df-limc 23850 df-dv 23851 df-log 24524 |
This theorem is referenced by: logge0 24572 logled 24594 logbleb 24742 harmonicbnd3 24955 harmonicbnd4 24958 vmalelog 25151 logfacubnd 25167 logfacbnd3 25169 logfacrlim 25170 logexprlim 25171 rpvmasumlem 25397 dchrvmasumiflem1 25411 dchrisum0fno1 25421 dchrisum0re 25423 dirith2 25438 mulog2sumlem1 25444 mulog2sumlem2 25445 log2sumbnd 25454 selberg2lem 25460 chpdifbndlem1 25463 chpdifbndlem2 25464 logdivbnd 25466 selberg3lem1 25467 pntpbnd1a 25495 pntlemn 25510 pntlemj 25513 pntlemk 25516 hgt750lem 31069 hgt750lemb 31074 reglogleb 37982 |
Copyright terms: Public domain | W3C validator |