| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efle | Structured version Visualization version GIF version | ||
| Description: The exponential function on the reals is nondecreasing. (Contributed by Mario Carneiro, 11-Mar-2014.) |
| Ref | Expression |
|---|---|
| efle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (exp‘𝐴) ≤ (exp‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eflt 16140 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ (exp‘𝐵) < (exp‘𝐴))) | |
| 2 | 1 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ (exp‘𝐵) < (exp‘𝐴))) |
| 3 | 2 | notbid 318 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴 ↔ ¬ (exp‘𝐵) < (exp‘𝐴))) |
| 4 | lenlt 11318 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 5 | reefcl 16108 | . . 3 ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ) | |
| 6 | reefcl 16108 | . . 3 ⊢ (𝐵 ∈ ℝ → (exp‘𝐵) ∈ ℝ) | |
| 7 | lenlt 11318 | . . 3 ⊢ (((exp‘𝐴) ∈ ℝ ∧ (exp‘𝐵) ∈ ℝ) → ((exp‘𝐴) ≤ (exp‘𝐵) ↔ ¬ (exp‘𝐵) < (exp‘𝐴))) | |
| 8 | 5, 6, 7 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) ≤ (exp‘𝐵) ↔ ¬ (exp‘𝐵) < (exp‘𝐴))) |
| 9 | 3, 4, 8 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (exp‘𝐴) ≤ (exp‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 ℝcr 11133 < clt 11274 ≤ cle 11275 expce 16082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-ico 13373 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-fac 14297 df-bc 14326 df-hash 14354 df-shft 15091 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 df-rlim 15510 df-sum 15708 df-ef 16088 |
| This theorem is referenced by: reef11 16142 logdivlti 26586 cxple2 26663 abscxpbnd 26720 birthdaylem3 26920 amgmlem 26957 logdifbnd 26961 emcllem2 26964 zetacvg 26982 vmage0 27088 chpge0 27093 chtleppi 27178 chtublem 27179 efexple 27249 bposlem1 27252 bposlem6 27257 chebbnd1lem1 27437 chtppilimlem1 27441 pntpbnd1a 27553 pntpbnd2 27555 pntibndlem3 27560 ostth2lem4 27604 ostth2 27605 xrge0iifcnv 33969 logdivsqrle 34687 amgmwlem 49633 |
| Copyright terms: Public domain | W3C validator |