![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efle | Structured version Visualization version GIF version |
Description: The exponential function on the reals is nondecreasing. (Contributed by Mario Carneiro, 11-Mar-2014.) |
Ref | Expression |
---|---|
efle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (exp‘𝐴) ≤ (exp‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eflt 15329 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ (exp‘𝐵) < (exp‘𝐴))) | |
2 | 1 | ancoms 451 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ (exp‘𝐵) < (exp‘𝐴))) |
3 | 2 | notbid 310 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴 ↔ ¬ (exp‘𝐵) < (exp‘𝐴))) |
4 | lenlt 10518 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
5 | reefcl 15299 | . . 3 ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ) | |
6 | reefcl 15299 | . . 3 ⊢ (𝐵 ∈ ℝ → (exp‘𝐵) ∈ ℝ) | |
7 | lenlt 10518 | . . 3 ⊢ (((exp‘𝐴) ∈ ℝ ∧ (exp‘𝐵) ∈ ℝ) → ((exp‘𝐴) ≤ (exp‘𝐵) ↔ ¬ (exp‘𝐵) < (exp‘𝐴))) | |
8 | 5, 6, 7 | syl2an 587 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) ≤ (exp‘𝐵) ↔ ¬ (exp‘𝐵) < (exp‘𝐴))) |
9 | 3, 4, 8 | 3bitr4d 303 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (exp‘𝐴) ≤ (exp‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∈ wcel 2051 class class class wbr 4926 ‘cfv 6186 ℝcr 10333 < clt 10473 ≤ cle 10474 expce 15274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-inf2 8897 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 ax-pre-sup 10412 ax-addf 10413 ax-mulf 10414 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-se 5364 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-isom 6195 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-1st 7500 df-2nd 7501 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-oadd 7908 df-er 8088 df-pm 8208 df-en 8306 df-dom 8307 df-sdom 8308 df-fin 8309 df-sup 8700 df-inf 8701 df-oi 8768 df-card 9161 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-div 11098 df-nn 11439 df-2 11502 df-3 11503 df-n0 11707 df-z 11793 df-uz 12058 df-rp 12204 df-ico 12559 df-fz 12708 df-fzo 12849 df-fl 12976 df-seq 13184 df-exp 13244 df-fac 13448 df-bc 13477 df-hash 13505 df-shft 14286 df-cj 14318 df-re 14319 df-im 14320 df-sqrt 14454 df-abs 14455 df-limsup 14688 df-clim 14705 df-rlim 14706 df-sum 14903 df-ef 15280 |
This theorem is referenced by: reef11 15331 logdivlti 24920 cxple2 24997 abscxpbnd 25051 birthdaylem3 25249 amgmlem 25285 logdifbnd 25289 emcllem2 25292 zetacvg 25310 vmage0 25416 chpge0 25421 chtleppi 25504 chtublem 25505 efexple 25575 bposlem1 25578 bposlem6 25583 chebbnd1lem1 25763 chtppilimlem1 25767 pntpbnd1a 25879 pntpbnd2 25881 pntibndlem3 25886 ostth2lem4 25930 ostth2 25931 xrge0iifcnv 30853 logdivsqrle 31602 amgmwlem 44300 |
Copyright terms: Public domain | W3C validator |