MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lncgr Structured version   Visualization version   GIF version

Theorem lncgr 26475
Description: Congruence rule for lines. Theorem 4.17 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 28-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
lnxfr.r = (cgrG‘𝐺)
lnxfr.a (𝜑𝐴𝑃)
lnxfr.b (𝜑𝐵𝑃)
lnxfr.d = (dist‘𝐺)
lncgr.1 (𝜑𝑋𝑌)
lncgr.2 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
lncgr.3 (𝜑 → (𝑋 𝐴) = (𝑋 𝐵))
lncgr.4 (𝜑 → (𝑌 𝐴) = (𝑌 𝐵))
Assertion
Ref Expression
lncgr (𝜑 → (𝑍 𝐴) = (𝑍 𝐵))

Proof of Theorem lncgr
StepHypRef Expression
1 tglngval.p . 2 𝑃 = (Base‘𝐺)
2 tglngval.l . 2 𝐿 = (LineG‘𝐺)
3 tglngval.i . 2 𝐼 = (Itv‘𝐺)
4 tglngval.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tglngval.x . 2 (𝜑𝑋𝑃)
6 tglngval.y . 2 (𝜑𝑌𝑃)
7 tgcolg.z . 2 (𝜑𝑍𝑃)
8 lnxfr.r . 2 = (cgrG‘𝐺)
9 lnxfr.d . 2 = (dist‘𝐺)
10 lnxfr.a . 2 (𝜑𝐴𝑃)
11 lnxfr.b . 2 (𝜑𝐵𝑃)
12 lncgr.2 . 2 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
131, 9, 3, 8, 4, 5, 6, 7cgr3id 26425 . 2 (𝜑 → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝑋𝑌𝑍”⟩)
14 lncgr.3 . 2 (𝜑 → (𝑋 𝐴) = (𝑋 𝐵))
15 lncgr.4 . 2 (𝜑 → (𝑌 𝐴) = (𝑌 𝐵))
16 lncgr.1 . 2 (𝜑𝑋𝑌)
171, 2, 3, 4, 5, 6, 7, 8, 5, 6, 9, 10, 7, 11, 12, 13, 14, 15, 16tgfscgr 26474 1 (𝜑 → (𝑍 𝐴) = (𝑍 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844   = wceq 1538  wcel 2111  wne 2951  cfv 6340  (class class class)co 7156  Basecbs 16554  distcds 16645  TarskiGcstrkg 26336  Itvcitv 26342  LineGclng 26343  cgrGccgrg 26416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-oadd 8122  df-er 8305  df-pm 8425  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-dju 9376  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-n0 11948  df-xnn0 12020  df-z 12034  df-uz 12296  df-fz 12953  df-fzo 13096  df-hash 13754  df-word 13927  df-concat 13983  df-s1 14010  df-s2 14270  df-s3 14271  df-trkgc 26354  df-trkgb 26355  df-trkgcb 26356  df-trkg 26359  df-cgrg 26417
This theorem is referenced by:  lnid  26476  tgbtwnconn1lem3  26480  krippenlem  26596  midexlem  26598  ragcol  26605  hypcgrlem1  26705  trgcopyeulem  26711
  Copyright terms: Public domain W3C validator