MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lncgr Structured version   Visualization version   GIF version

Theorem lncgr 28547
Description: Congruence rule for lines. Theorem 4.17 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 28-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
lnxfr.r = (cgrG‘𝐺)
lnxfr.a (𝜑𝐴𝑃)
lnxfr.b (𝜑𝐵𝑃)
lnxfr.d = (dist‘𝐺)
lncgr.1 (𝜑𝑋𝑌)
lncgr.2 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
lncgr.3 (𝜑 → (𝑋 𝐴) = (𝑋 𝐵))
lncgr.4 (𝜑 → (𝑌 𝐴) = (𝑌 𝐵))
Assertion
Ref Expression
lncgr (𝜑 → (𝑍 𝐴) = (𝑍 𝐵))

Proof of Theorem lncgr
StepHypRef Expression
1 tglngval.p . 2 𝑃 = (Base‘𝐺)
2 tglngval.l . 2 𝐿 = (LineG‘𝐺)
3 tglngval.i . 2 𝐼 = (Itv‘𝐺)
4 tglngval.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tglngval.x . 2 (𝜑𝑋𝑃)
6 tglngval.y . 2 (𝜑𝑌𝑃)
7 tgcolg.z . 2 (𝜑𝑍𝑃)
8 lnxfr.r . 2 = (cgrG‘𝐺)
9 lnxfr.d . 2 = (dist‘𝐺)
10 lnxfr.a . 2 (𝜑𝐴𝑃)
11 lnxfr.b . 2 (𝜑𝐵𝑃)
12 lncgr.2 . 2 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
131, 9, 3, 8, 4, 5, 6, 7cgr3id 28497 . 2 (𝜑 → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝑋𝑌𝑍”⟩)
14 lncgr.3 . 2 (𝜑 → (𝑋 𝐴) = (𝑋 𝐵))
15 lncgr.4 . 2 (𝜑 → (𝑌 𝐴) = (𝑌 𝐵))
16 lncgr.1 . 2 (𝜑𝑋𝑌)
171, 2, 3, 4, 5, 6, 7, 8, 5, 6, 9, 10, 7, 11, 12, 13, 14, 15, 16tgfscgr 28546 1 (𝜑 → (𝑍 𝐴) = (𝑍 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2111  wne 2928  cfv 6481  (class class class)co 7346  Basecbs 17120  distcds 17170  TarskiGcstrkg 28405  Itvcitv 28411  LineGclng 28412  cgrGccgrg 28488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14504  df-s2 14755  df-s3 14756  df-trkgc 28426  df-trkgb 28427  df-trkgcb 28428  df-trkg 28431  df-cgrg 28489
This theorem is referenced by:  lnid  28548  tgbtwnconn1lem3  28552  krippenlem  28668  midexlem  28670  ragcol  28677  hypcgrlem1  28777  trgcopyeulem  28783
  Copyright terms: Public domain W3C validator