Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdn0 Structured version   Visualization version   GIF version

Theorem mapdn0 41648
Description: Transfer nonzero property from domain to range of projectivity mapd. (Contributed by NM, 12-Apr-2015.)
Hypotheses
Ref Expression
mapdindp.h 𝐻 = (LHyp‘𝐾)
mapdindp.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdindp.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdindp.v 𝑉 = (Base‘𝑈)
mapdindp.n 𝑁 = (LSpan‘𝑈)
mapdindp.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdindp.d 𝐷 = (Base‘𝐶)
mapdindp.j 𝐽 = (LSpan‘𝐶)
mapdindp.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdindp.f (𝜑𝐹𝐷)
mapdindp.mx (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdn0.o 0 = (0g𝑈)
mapdn0.z 𝑍 = (0g𝐶)
mapdn0.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
mapdn0 (𝜑𝐹 ∈ (𝐷 ∖ {𝑍}))

Proof of Theorem mapdn0
StepHypRef Expression
1 mapdindp.f . 2 (𝜑𝐹𝐷)
2 mapdn0.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
3 eldifsni 4744 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
42, 3syl 17 . . 3 (𝜑𝑋0 )
5 mapdindp.mx . . . . . . . 8 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
6 sneq 4589 . . . . . . . . 9 (𝐹 = 𝑍 → {𝐹} = {𝑍})
76fveq2d 6830 . . . . . . . 8 (𝐹 = 𝑍 → (𝐽‘{𝐹}) = (𝐽‘{𝑍}))
85, 7sylan9eq 2784 . . . . . . 7 ((𝜑𝐹 = 𝑍) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝑍}))
9 mapdindp.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
10 mapdindp.m . . . . . . . . . 10 𝑀 = ((mapd‘𝐾)‘𝑊)
11 mapdindp.u . . . . . . . . . 10 𝑈 = ((DVecH‘𝐾)‘𝑊)
12 mapdn0.o . . . . . . . . . 10 0 = (0g𝑈)
13 mapdindp.c . . . . . . . . . 10 𝐶 = ((LCDual‘𝐾)‘𝑊)
14 mapdn0.z . . . . . . . . . 10 𝑍 = (0g𝐶)
15 mapdindp.k . . . . . . . . . 10 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
169, 10, 11, 12, 13, 14, 15mapd0 41644 . . . . . . . . 9 (𝜑 → (𝑀‘{ 0 }) = {𝑍})
179, 13, 15lcdlmod 41571 . . . . . . . . . 10 (𝜑𝐶 ∈ LMod)
18 mapdindp.j . . . . . . . . . . 11 𝐽 = (LSpan‘𝐶)
1914, 18lspsn0 20929 . . . . . . . . . 10 (𝐶 ∈ LMod → (𝐽‘{𝑍}) = {𝑍})
2017, 19syl 17 . . . . . . . . 9 (𝜑 → (𝐽‘{𝑍}) = {𝑍})
2116, 20eqtr4d 2767 . . . . . . . 8 (𝜑 → (𝑀‘{ 0 }) = (𝐽‘{𝑍}))
2221adantr 480 . . . . . . 7 ((𝜑𝐹 = 𝑍) → (𝑀‘{ 0 }) = (𝐽‘{𝑍}))
238, 22eqtr4d 2767 . . . . . 6 ((𝜑𝐹 = 𝑍) → (𝑀‘(𝑁‘{𝑋})) = (𝑀‘{ 0 }))
2423ex 412 . . . . 5 (𝜑 → (𝐹 = 𝑍 → (𝑀‘(𝑁‘{𝑋})) = (𝑀‘{ 0 })))
25 eqid 2729 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
269, 11, 15dvhlmod 41089 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
272eldifad 3917 . . . . . . . 8 (𝜑𝑋𝑉)
28 mapdindp.v . . . . . . . . 9 𝑉 = (Base‘𝑈)
29 mapdindp.n . . . . . . . . 9 𝑁 = (LSpan‘𝑈)
3028, 25, 29lspsncl 20898 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
3126, 27, 30syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
3212, 25lsssn0 20869 . . . . . . . 8 (𝑈 ∈ LMod → { 0 } ∈ (LSubSp‘𝑈))
3326, 32syl 17 . . . . . . 7 (𝜑 → { 0 } ∈ (LSubSp‘𝑈))
349, 11, 25, 10, 15, 31, 33mapd11 41618 . . . . . 6 (𝜑 → ((𝑀‘(𝑁‘{𝑋})) = (𝑀‘{ 0 }) ↔ (𝑁‘{𝑋}) = { 0 }))
3528, 12, 29lspsneq0 20933 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
3626, 27, 35syl2anc 584 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
3734, 36bitrd 279 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{𝑋})) = (𝑀‘{ 0 }) ↔ 𝑋 = 0 ))
3824, 37sylibd 239 . . . 4 (𝜑 → (𝐹 = 𝑍𝑋 = 0 ))
3938necon3d 2946 . . 3 (𝜑 → (𝑋0𝐹𝑍))
404, 39mpd 15 . 2 (𝜑𝐹𝑍)
41 eldifsn 4740 . 2 (𝐹 ∈ (𝐷 ∖ {𝑍}) ↔ (𝐹𝐷𝐹𝑍))
421, 40, 41sylanbrc 583 1 (𝜑𝐹 ∈ (𝐷 ∖ {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3902  {csn 4579  cfv 6486  Basecbs 17138  0gc0g 17361  LModclmod 20781  LSubSpclss 20852  LSpanclspn 20892  HLchlt 39328  LHypclh 39963  DVecHcdvh 41057  LCDualclcd 41565  mapdcmpd 41603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-riotaBAD 38931
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-undef 8213  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17363  df-mre 17506  df-mrc 17507  df-acs 17509  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-oppg 19243  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-nzr 20416  df-rlreg 20597  df-domn 20598  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lvec 21025  df-lsatoms 38954  df-lshyp 38955  df-lcv 38997  df-lfl 39036  df-lkr 39064  df-ldual 39102  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138  df-tgrp 40722  df-tendo 40734  df-edring 40736  df-dveca 40982  df-disoa 41008  df-dvech 41058  df-dib 41118  df-dic 41152  df-dih 41208  df-doch 41327  df-djh 41374  df-lcdual 41566  df-mapd 41604
This theorem is referenced by:  mapdheq4lem  41710  mapdh6lem1N  41712  mapdh6lem2N  41713  hdmap1l6lem1  41786  hdmap1l6lem2  41787
  Copyright terms: Public domain W3C validator