Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdn0 | Structured version Visualization version GIF version |
Description: Transfer nonzero property from domain to range of projectivity mapd. (Contributed by NM, 12-Apr-2015.) |
Ref | Expression |
---|---|
mapdindp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdindp.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdindp.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdindp.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdindp.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdindp.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdindp.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdindp.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdindp.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdindp.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdindp.mx | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdn0.o | ⊢ 0 = (0g‘𝑈) |
mapdn0.z | ⊢ 𝑍 = (0g‘𝐶) |
mapdn0.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
Ref | Expression |
---|---|
mapdn0 | ⊢ (𝜑 → 𝐹 ∈ (𝐷 ∖ {𝑍})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdindp.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
2 | mapdn0.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
3 | eldifsni 4720 | . . . 4 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
5 | mapdindp.mx | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
6 | sneq 4568 | . . . . . . . . 9 ⊢ (𝐹 = 𝑍 → {𝐹} = {𝑍}) | |
7 | 6 | fveq2d 6743 | . . . . . . . 8 ⊢ (𝐹 = 𝑍 → (𝐽‘{𝐹}) = (𝐽‘{𝑍})) |
8 | 5, 7 | sylan9eq 2800 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐹 = 𝑍) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝑍})) |
9 | mapdindp.h | . . . . . . . . . 10 ⊢ 𝐻 = (LHyp‘𝐾) | |
10 | mapdindp.m | . . . . . . . . . 10 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
11 | mapdindp.u | . . . . . . . . . 10 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
12 | mapdn0.o | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑈) | |
13 | mapdindp.c | . . . . . . . . . 10 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
14 | mapdn0.z | . . . . . . . . . 10 ⊢ 𝑍 = (0g‘𝐶) | |
15 | mapdindp.k | . . . . . . . . . 10 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
16 | 9, 10, 11, 12, 13, 14, 15 | mapd0 39453 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀‘{ 0 }) = {𝑍}) |
17 | 9, 13, 15 | lcdlmod 39380 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ LMod) |
18 | mapdindp.j | . . . . . . . . . . 11 ⊢ 𝐽 = (LSpan‘𝐶) | |
19 | 14, 18 | lspsn0 20078 | . . . . . . . . . 10 ⊢ (𝐶 ∈ LMod → (𝐽‘{𝑍}) = {𝑍}) |
20 | 17, 19 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐽‘{𝑍}) = {𝑍}) |
21 | 16, 20 | eqtr4d 2782 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘{ 0 }) = (𝐽‘{𝑍})) |
22 | 21 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐹 = 𝑍) → (𝑀‘{ 0 }) = (𝐽‘{𝑍})) |
23 | 8, 22 | eqtr4d 2782 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 = 𝑍) → (𝑀‘(𝑁‘{𝑋})) = (𝑀‘{ 0 })) |
24 | 23 | ex 416 | . . . . 5 ⊢ (𝜑 → (𝐹 = 𝑍 → (𝑀‘(𝑁‘{𝑋})) = (𝑀‘{ 0 }))) |
25 | eqid 2739 | . . . . . . 7 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
26 | 9, 11, 15 | dvhlmod 38898 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
27 | 2 | eldifad 3895 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
28 | mapdindp.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑈) | |
29 | mapdindp.n | . . . . . . . . 9 ⊢ 𝑁 = (LSpan‘𝑈) | |
30 | 28, 25, 29 | lspsncl 20047 | . . . . . . . 8 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
31 | 26, 27, 30 | syl2anc 587 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
32 | 12, 25 | lsssn0 20017 | . . . . . . . 8 ⊢ (𝑈 ∈ LMod → { 0 } ∈ (LSubSp‘𝑈)) |
33 | 26, 32 | syl 17 | . . . . . . 7 ⊢ (𝜑 → { 0 } ∈ (LSubSp‘𝑈)) |
34 | 9, 11, 25, 10, 15, 31, 33 | mapd11 39427 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑋})) = (𝑀‘{ 0 }) ↔ (𝑁‘{𝑋}) = { 0 })) |
35 | 28, 12, 29 | lspsneq0 20082 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
36 | 26, 27, 35 | syl2anc 587 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
37 | 34, 36 | bitrd 282 | . . . . 5 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑋})) = (𝑀‘{ 0 }) ↔ 𝑋 = 0 )) |
38 | 24, 37 | sylibd 242 | . . . 4 ⊢ (𝜑 → (𝐹 = 𝑍 → 𝑋 = 0 )) |
39 | 38 | necon3d 2964 | . . 3 ⊢ (𝜑 → (𝑋 ≠ 0 → 𝐹 ≠ 𝑍)) |
40 | 4, 39 | mpd 15 | . 2 ⊢ (𝜑 → 𝐹 ≠ 𝑍) |
41 | eldifsn 4717 | . 2 ⊢ (𝐹 ∈ (𝐷 ∖ {𝑍}) ↔ (𝐹 ∈ 𝐷 ∧ 𝐹 ≠ 𝑍)) | |
42 | 1, 40, 41 | sylanbrc 586 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐷 ∖ {𝑍})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 ∖ cdif 3880 {csn 4558 ‘cfv 6401 Basecbs 16793 0gc0g 16977 LModclmod 19932 LSubSpclss 20001 LSpanclspn 20041 HLchlt 37138 LHypclh 37772 DVecHcdvh 38866 LCDualclcd 39374 mapdcmpd 39412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 ax-riotaBAD 36741 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-of 7491 df-om 7667 df-1st 7783 df-2nd 7784 df-tpos 7992 df-undef 8039 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-1o 8226 df-er 8415 df-map 8534 df-en 8651 df-dom 8652 df-sdom 8653 df-fin 8654 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-nn 11861 df-2 11923 df-3 11924 df-4 11925 df-5 11926 df-6 11927 df-n0 12121 df-z 12207 df-uz 12469 df-fz 13126 df-struct 16733 df-sets 16750 df-slot 16768 df-ndx 16778 df-base 16794 df-ress 16818 df-plusg 16848 df-mulr 16849 df-sca 16851 df-vsca 16852 df-0g 16979 df-mre 17122 df-mrc 17123 df-acs 17125 df-proset 17835 df-poset 17853 df-plt 17869 df-lub 17885 df-glb 17886 df-join 17887 df-meet 17888 df-p0 17964 df-p1 17965 df-lat 17971 df-clat 18038 df-mgm 18147 df-sgrp 18196 df-mnd 18207 df-submnd 18252 df-grp 18401 df-minusg 18402 df-sbg 18403 df-subg 18573 df-cntz 18744 df-oppg 18771 df-lsm 19058 df-cmn 19205 df-abl 19206 df-mgp 19538 df-ur 19550 df-ring 19597 df-oppr 19674 df-dvdsr 19692 df-unit 19693 df-invr 19723 df-dvr 19734 df-drng 19802 df-lmod 19934 df-lss 20002 df-lsp 20042 df-lvec 20173 df-lsatoms 36764 df-lshyp 36765 df-lcv 36807 df-lfl 36846 df-lkr 36874 df-ldual 36912 df-oposet 36964 df-ol 36966 df-oml 36967 df-covers 37054 df-ats 37055 df-atl 37086 df-cvlat 37110 df-hlat 37139 df-llines 37286 df-lplanes 37287 df-lvols 37288 df-lines 37289 df-psubsp 37291 df-pmap 37292 df-padd 37584 df-lhyp 37776 df-laut 37777 df-ldil 37892 df-ltrn 37893 df-trl 37947 df-tgrp 38531 df-tendo 38543 df-edring 38545 df-dveca 38791 df-disoa 38817 df-dvech 38867 df-dib 38927 df-dic 38961 df-dih 39017 df-doch 39136 df-djh 39183 df-lcdual 39375 df-mapd 39413 |
This theorem is referenced by: mapdheq4lem 39519 mapdh6lem1N 39521 mapdh6lem2N 39522 hdmap1l6lem1 39595 hdmap1l6lem2 39596 |
Copyright terms: Public domain | W3C validator |