Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdn0 Structured version   Visualization version   GIF version

Theorem mapdn0 38809
Description: Transfer nonzero property from domain to range of projectivity mapd. (Contributed by NM, 12-Apr-2015.)
Hypotheses
Ref Expression
mapdindp.h 𝐻 = (LHyp‘𝐾)
mapdindp.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdindp.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdindp.v 𝑉 = (Base‘𝑈)
mapdindp.n 𝑁 = (LSpan‘𝑈)
mapdindp.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdindp.d 𝐷 = (Base‘𝐶)
mapdindp.j 𝐽 = (LSpan‘𝐶)
mapdindp.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdindp.f (𝜑𝐹𝐷)
mapdindp.mx (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdn0.o 0 = (0g𝑈)
mapdn0.z 𝑍 = (0g𝐶)
mapdn0.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
mapdn0 (𝜑𝐹 ∈ (𝐷 ∖ {𝑍}))

Proof of Theorem mapdn0
StepHypRef Expression
1 mapdindp.f . 2 (𝜑𝐹𝐷)
2 mapdn0.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
3 eldifsni 4725 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
42, 3syl 17 . . 3 (𝜑𝑋0 )
5 mapdindp.mx . . . . . . . 8 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
6 sneq 4580 . . . . . . . . 9 (𝐹 = 𝑍 → {𝐹} = {𝑍})
76fveq2d 6677 . . . . . . . 8 (𝐹 = 𝑍 → (𝐽‘{𝐹}) = (𝐽‘{𝑍}))
85, 7sylan9eq 2879 . . . . . . 7 ((𝜑𝐹 = 𝑍) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝑍}))
9 mapdindp.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
10 mapdindp.m . . . . . . . . . 10 𝑀 = ((mapd‘𝐾)‘𝑊)
11 mapdindp.u . . . . . . . . . 10 𝑈 = ((DVecH‘𝐾)‘𝑊)
12 mapdn0.o . . . . . . . . . 10 0 = (0g𝑈)
13 mapdindp.c . . . . . . . . . 10 𝐶 = ((LCDual‘𝐾)‘𝑊)
14 mapdn0.z . . . . . . . . . 10 𝑍 = (0g𝐶)
15 mapdindp.k . . . . . . . . . 10 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
169, 10, 11, 12, 13, 14, 15mapd0 38805 . . . . . . . . 9 (𝜑 → (𝑀‘{ 0 }) = {𝑍})
179, 13, 15lcdlmod 38732 . . . . . . . . . 10 (𝜑𝐶 ∈ LMod)
18 mapdindp.j . . . . . . . . . . 11 𝐽 = (LSpan‘𝐶)
1914, 18lspsn0 19783 . . . . . . . . . 10 (𝐶 ∈ LMod → (𝐽‘{𝑍}) = {𝑍})
2017, 19syl 17 . . . . . . . . 9 (𝜑 → (𝐽‘{𝑍}) = {𝑍})
2116, 20eqtr4d 2862 . . . . . . . 8 (𝜑 → (𝑀‘{ 0 }) = (𝐽‘{𝑍}))
2221adantr 483 . . . . . . 7 ((𝜑𝐹 = 𝑍) → (𝑀‘{ 0 }) = (𝐽‘{𝑍}))
238, 22eqtr4d 2862 . . . . . 6 ((𝜑𝐹 = 𝑍) → (𝑀‘(𝑁‘{𝑋})) = (𝑀‘{ 0 }))
2423ex 415 . . . . 5 (𝜑 → (𝐹 = 𝑍 → (𝑀‘(𝑁‘{𝑋})) = (𝑀‘{ 0 })))
25 eqid 2824 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
269, 11, 15dvhlmod 38250 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
272eldifad 3951 . . . . . . . 8 (𝜑𝑋𝑉)
28 mapdindp.v . . . . . . . . 9 𝑉 = (Base‘𝑈)
29 mapdindp.n . . . . . . . . 9 𝑁 = (LSpan‘𝑈)
3028, 25, 29lspsncl 19752 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
3126, 27, 30syl2anc 586 . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
3212, 25lsssn0 19722 . . . . . . . 8 (𝑈 ∈ LMod → { 0 } ∈ (LSubSp‘𝑈))
3326, 32syl 17 . . . . . . 7 (𝜑 → { 0 } ∈ (LSubSp‘𝑈))
349, 11, 25, 10, 15, 31, 33mapd11 38779 . . . . . 6 (𝜑 → ((𝑀‘(𝑁‘{𝑋})) = (𝑀‘{ 0 }) ↔ (𝑁‘{𝑋}) = { 0 }))
3528, 12, 29lspsneq0 19787 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
3626, 27, 35syl2anc 586 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
3734, 36bitrd 281 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{𝑋})) = (𝑀‘{ 0 }) ↔ 𝑋 = 0 ))
3824, 37sylibd 241 . . . 4 (𝜑 → (𝐹 = 𝑍𝑋 = 0 ))
3938necon3d 3040 . . 3 (𝜑 → (𝑋0𝐹𝑍))
404, 39mpd 15 . 2 (𝜑𝐹𝑍)
41 eldifsn 4722 . 2 (𝐹 ∈ (𝐷 ∖ {𝑍}) ↔ (𝐹𝐷𝐹𝑍))
421, 40, 41sylanbrc 585 1 (𝜑𝐹 ∈ (𝐷 ∖ {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019  cdif 3936  {csn 4570  cfv 6358  Basecbs 16486  0gc0g 16716  LModclmod 19637  LSubSpclss 19706  LSpanclspn 19746  HLchlt 36490  LHypclh 37124  DVecHcdvh 38218  LCDualclcd 38726  mapdcmpd 38764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-riotaBAD 36093
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-tpos 7895  df-undef 7942  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-0g 16718  df-mre 16860  df-mrc 16861  df-acs 16863  df-proset 17541  df-poset 17559  df-plt 17571  df-lub 17587  df-glb 17588  df-join 17589  df-meet 17590  df-p0 17652  df-p1 17653  df-lat 17659  df-clat 17721  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-subg 18279  df-cntz 18450  df-oppg 18477  df-lsm 18764  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-dvr 19436  df-drng 19507  df-lmod 19639  df-lss 19707  df-lsp 19747  df-lvec 19878  df-lsatoms 36116  df-lshyp 36117  df-lcv 36159  df-lfl 36198  df-lkr 36226  df-ldual 36264  df-oposet 36316  df-ol 36318  df-oml 36319  df-covers 36406  df-ats 36407  df-atl 36438  df-cvlat 36462  df-hlat 36491  df-llines 36638  df-lplanes 36639  df-lvols 36640  df-lines 36641  df-psubsp 36643  df-pmap 36644  df-padd 36936  df-lhyp 37128  df-laut 37129  df-ldil 37244  df-ltrn 37245  df-trl 37299  df-tgrp 37883  df-tendo 37895  df-edring 37897  df-dveca 38143  df-disoa 38169  df-dvech 38219  df-dib 38279  df-dic 38313  df-dih 38369  df-doch 38488  df-djh 38535  df-lcdual 38727  df-mapd 38765
This theorem is referenced by:  mapdheq4lem  38871  mapdh6lem1N  38873  mapdh6lem2N  38874  hdmap1l6lem1  38947  hdmap1l6lem2  38948
  Copyright terms: Public domain W3C validator