| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minvec | Structured version Visualization version GIF version | ||
| Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace 𝑊 that minimizes the distance to an arbitrary vector 𝐴 in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Proof shortened by AV, 3-Oct-2020.) |
| Ref | Expression |
|---|---|
| minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
| minvec.m | ⊢ − = (-g‘𝑈) |
| minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
| minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
| minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
| minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
| minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| minvec | ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minvec.x | . 2 ⊢ 𝑋 = (Base‘𝑈) | |
| 2 | minvec.m | . 2 ⊢ − = (-g‘𝑈) | |
| 3 | minvec.n | . 2 ⊢ 𝑁 = (norm‘𝑈) | |
| 4 | minvec.u | . 2 ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) | |
| 5 | minvec.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
| 6 | minvec.w | . 2 ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) | |
| 7 | minvec.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 8 | eqid 2734 | . 2 ⊢ (TopOpen‘𝑈) = (TopOpen‘𝑈) | |
| 9 | oveq2 7421 | . . . . 5 ⊢ (𝑗 = 𝑦 → (𝐴 − 𝑗) = (𝐴 − 𝑦)) | |
| 10 | 9 | fveq2d 6890 | . . . 4 ⊢ (𝑗 = 𝑦 → (𝑁‘(𝐴 − 𝑗)) = (𝑁‘(𝐴 − 𝑦))) |
| 11 | 10 | cbvmptv 5235 | . . 3 ⊢ (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑗))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
| 12 | 11 | rneqi 5928 | . 2 ⊢ ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑗))) = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
| 13 | eqid 2734 | . 2 ⊢ inf(ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑗))), ℝ, < ) = inf(ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑗))), ℝ, < ) | |
| 14 | eqid 2734 | . 2 ⊢ ((dist‘𝑈) ↾ (𝑋 × 𝑋)) = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) | |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14 | minveclem7 25405 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃!wreu 3361 class class class wbr 5123 ↦ cmpt 5205 × cxp 5663 ran crn 5666 ↾ cres 5667 ‘cfv 6541 (class class class)co 7413 infcinf 9463 ℝcr 11136 < clt 11277 ≤ cle 11278 Basecbs 17229 ↾s cress 17252 distcds 17282 TopOpenctopn 17437 -gcsg 18922 LSubSpclss 20897 normcnm 24533 ℂPreHilccph 25136 CMetSpccms 25302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 ax-mulf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fi 9433 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-ico 13375 df-icc 13376 df-fz 13530 df-seq 14025 df-exp 14085 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-starv 17288 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-unif 17296 df-rest 17438 df-0g 17457 df-topgen 17459 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-mhm 18765 df-grp 18923 df-minusg 18924 df-sbg 18925 df-mulg 19055 df-subg 19110 df-ghm 19200 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-dvr 20369 df-rhm 20440 df-subrg 20538 df-drng 20699 df-staf 20808 df-srng 20809 df-lmod 20828 df-lss 20898 df-lmhm 20989 df-lvec 21070 df-sra 21140 df-rgmod 21141 df-psmet 21318 df-xmet 21319 df-met 21320 df-bl 21321 df-mopn 21322 df-fbas 21323 df-fg 21324 df-cnfld 21327 df-phl 21598 df-top 22848 df-topon 22865 df-topsp 22887 df-bases 22900 df-cld 22973 df-ntr 22974 df-cls 22975 df-nei 23052 df-haus 23269 df-fil 23800 df-flim 23893 df-xms 24275 df-ms 24276 df-nm 24539 df-ngp 24540 df-nlm 24543 df-clm 25032 df-cph 25138 df-cfil 25225 df-cmet 25227 df-cms 25305 |
| This theorem is referenced by: pjthlem2 25408 |
| Copyright terms: Public domain | W3C validator |