MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvec Structured version   Visualization version   GIF version

Theorem minvec 25364
Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace 𝑊 that minimizes the distance to an arbitrary vector 𝐴 in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Proof shortened by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
Assertion
Ref Expression
minvec (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐴,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem minvec
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 minvec.x . 2 𝑋 = (Base‘𝑈)
2 minvec.m . 2 = (-g𝑈)
3 minvec.n . 2 𝑁 = (norm‘𝑈)
4 minvec.u . 2 (𝜑𝑈 ∈ ℂPreHil)
5 minvec.y . 2 (𝜑𝑌 ∈ (LSubSp‘𝑈))
6 minvec.w . 2 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
7 minvec.a . 2 (𝜑𝐴𝑋)
8 eqid 2733 . 2 (TopOpen‘𝑈) = (TopOpen‘𝑈)
9 oveq2 7360 . . . . 5 (𝑗 = 𝑦 → (𝐴 𝑗) = (𝐴 𝑦))
109fveq2d 6832 . . . 4 (𝑗 = 𝑦 → (𝑁‘(𝐴 𝑗)) = (𝑁‘(𝐴 𝑦)))
1110cbvmptv 5197 . . 3 (𝑗𝑌 ↦ (𝑁‘(𝐴 𝑗))) = (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
1211rneqi 5881 . 2 ran (𝑗𝑌 ↦ (𝑁‘(𝐴 𝑗))) = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
13 eqid 2733 . 2 inf(ran (𝑗𝑌 ↦ (𝑁‘(𝐴 𝑗))), ℝ, < ) = inf(ran (𝑗𝑌 ↦ (𝑁‘(𝐴 𝑗))), ℝ, < )
14 eqid 2733 . 2 ((dist‘𝑈) ↾ (𝑋 × 𝑋)) = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
151, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14minveclem7 25363 1 (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wral 3048  ∃!wreu 3345   class class class wbr 5093  cmpt 5174   × cxp 5617  ran crn 5620  cres 5621  cfv 6486  (class class class)co 7352  infcinf 9332  cr 11012   < clt 11153  cle 11154  Basecbs 17122  s cress 17143  distcds 17172  TopOpenctopn 17327  -gcsg 18850  LSubSpclss 20866  normcnm 24492  ℂPreHilccph 25094  CMetSpccms 25260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092  ax-mulf 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fi 9302  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ico 13253  df-icc 13254  df-fz 13410  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-rest 17328  df-0g 17347  df-topgen 17349  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-ghm 19127  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-subrg 20487  df-drng 20648  df-staf 20756  df-srng 20757  df-lmod 20797  df-lss 20867  df-lmhm 20958  df-lvec 21039  df-sra 21109  df-rgmod 21110  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-phl 21565  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-haus 23231  df-fil 23762  df-flim 23855  df-xms 24236  df-ms 24237  df-nm 24498  df-ngp 24499  df-nlm 24502  df-clm 24991  df-cph 25096  df-cfil 25183  df-cmet 25185  df-cms 25263
This theorem is referenced by:  pjthlem2  25366
  Copyright terms: Public domain W3C validator