![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minvec | Structured version Visualization version GIF version |
Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace 𝑊 that minimizes the distance to an arbitrary vector 𝐴 in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Proof shortened by AV, 3-Oct-2020.) |
Ref | Expression |
---|---|
minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
minvec.m | ⊢ − = (-g‘𝑈) |
minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Ref | Expression |
---|---|
minvec | ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minvec.x | . 2 ⊢ 𝑋 = (Base‘𝑈) | |
2 | minvec.m | . 2 ⊢ − = (-g‘𝑈) | |
3 | minvec.n | . 2 ⊢ 𝑁 = (norm‘𝑈) | |
4 | minvec.u | . 2 ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) | |
5 | minvec.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
6 | minvec.w | . 2 ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) | |
7 | minvec.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
8 | eqid 2731 | . 2 ⊢ (TopOpen‘𝑈) = (TopOpen‘𝑈) | |
9 | oveq2 7401 | . . . . 5 ⊢ (𝑗 = 𝑦 → (𝐴 − 𝑗) = (𝐴 − 𝑦)) | |
10 | 9 | fveq2d 6882 | . . . 4 ⊢ (𝑗 = 𝑦 → (𝑁‘(𝐴 − 𝑗)) = (𝑁‘(𝐴 − 𝑦))) |
11 | 10 | cbvmptv 5254 | . . 3 ⊢ (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑗))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
12 | 11 | rneqi 5928 | . 2 ⊢ ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑗))) = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
13 | eqid 2731 | . 2 ⊢ inf(ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑗))), ℝ, < ) = inf(ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑗))), ℝ, < ) | |
14 | eqid 2731 | . 2 ⊢ ((dist‘𝑈) ↾ (𝑋 × 𝑋)) = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14 | minveclem7 24881 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∀wral 3060 ∃!wreu 3373 class class class wbr 5141 ↦ cmpt 5224 × cxp 5667 ran crn 5670 ↾ cres 5671 ‘cfv 6532 (class class class)co 7393 infcinf 9418 ℝcr 11091 < clt 11230 ≤ cle 11231 Basecbs 17126 ↾s cress 17155 distcds 17188 TopOpenctopn 17349 -gcsg 18796 LSubSpclss 20491 normcnm 24014 ℂPreHilccph 24612 CMetSpccms 24778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 ax-pre-sup 11170 ax-addf 11171 ax-mulf 11172 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-tpos 8193 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fi 9388 df-sup 9419 df-inf 9420 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-div 11854 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-9 12264 df-n0 12455 df-z 12541 df-dec 12660 df-uz 12805 df-q 12915 df-rp 12957 df-xneg 13074 df-xadd 13075 df-xmul 13076 df-ico 13312 df-icc 13313 df-fz 13467 df-seq 13949 df-exp 14010 df-cj 15028 df-re 15029 df-im 15030 df-sqrt 15164 df-abs 15165 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-rest 17350 df-0g 17369 df-topgen 17371 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-mhm 18647 df-grp 18797 df-minusg 18798 df-sbg 18799 df-mulg 18923 df-subg 18975 df-ghm 19056 df-cmn 19614 df-abl 19615 df-mgp 19947 df-ur 19964 df-ring 20016 df-cring 20017 df-oppr 20102 df-dvdsr 20123 df-unit 20124 df-invr 20154 df-dvr 20165 df-rnghom 20201 df-drng 20267 df-subrg 20310 df-staf 20402 df-srng 20403 df-lmod 20422 df-lss 20492 df-lmhm 20582 df-lvec 20663 df-sra 20734 df-rgmod 20735 df-psmet 20870 df-xmet 20871 df-met 20872 df-bl 20873 df-mopn 20874 df-fbas 20875 df-fg 20876 df-cnfld 20879 df-phl 21112 df-top 22325 df-topon 22342 df-topsp 22364 df-bases 22378 df-cld 22452 df-ntr 22453 df-cls 22454 df-nei 22531 df-haus 22748 df-fil 23279 df-flim 23372 df-xms 23755 df-ms 23756 df-nm 24020 df-ngp 24021 df-nlm 24024 df-clm 24508 df-cph 24614 df-cfil 24701 df-cmet 24703 df-cms 24781 |
This theorem is referenced by: pjthlem2 24884 |
Copyright terms: Public domain | W3C validator |