| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minvec | Structured version Visualization version GIF version | ||
| Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace 𝑊 that minimizes the distance to an arbitrary vector 𝐴 in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Proof shortened by AV, 3-Oct-2020.) |
| Ref | Expression |
|---|---|
| minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
| minvec.m | ⊢ − = (-g‘𝑈) |
| minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
| minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
| minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
| minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
| minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| minvec | ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minvec.x | . 2 ⊢ 𝑋 = (Base‘𝑈) | |
| 2 | minvec.m | . 2 ⊢ − = (-g‘𝑈) | |
| 3 | minvec.n | . 2 ⊢ 𝑁 = (norm‘𝑈) | |
| 4 | minvec.u | . 2 ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) | |
| 5 | minvec.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
| 6 | minvec.w | . 2 ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) | |
| 7 | minvec.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 8 | eqid 2733 | . 2 ⊢ (TopOpen‘𝑈) = (TopOpen‘𝑈) | |
| 9 | oveq2 7360 | . . . . 5 ⊢ (𝑗 = 𝑦 → (𝐴 − 𝑗) = (𝐴 − 𝑦)) | |
| 10 | 9 | fveq2d 6832 | . . . 4 ⊢ (𝑗 = 𝑦 → (𝑁‘(𝐴 − 𝑗)) = (𝑁‘(𝐴 − 𝑦))) |
| 11 | 10 | cbvmptv 5197 | . . 3 ⊢ (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑗))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
| 12 | 11 | rneqi 5881 | . 2 ⊢ ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑗))) = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
| 13 | eqid 2733 | . 2 ⊢ inf(ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑗))), ℝ, < ) = inf(ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑗))), ℝ, < ) | |
| 14 | eqid 2733 | . 2 ⊢ ((dist‘𝑈) ↾ (𝑋 × 𝑋)) = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) | |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14 | minveclem7 25363 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃!wreu 3345 class class class wbr 5093 ↦ cmpt 5174 × cxp 5617 ran crn 5620 ↾ cres 5621 ‘cfv 6486 (class class class)co 7352 infcinf 9332 ℝcr 11012 < clt 11153 ≤ cle 11154 Basecbs 17122 ↾s cress 17143 distcds 17172 TopOpenctopn 17327 -gcsg 18850 LSubSpclss 20866 normcnm 24492 ℂPreHilccph 25094 CMetSpccms 25260 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 ax-mulf 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9302 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ico 13253 df-icc 13254 df-fz 13410 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-rest 17328 df-0g 17347 df-topgen 17349 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-ghm 19127 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-rhm 20392 df-subrg 20487 df-drng 20648 df-staf 20756 df-srng 20757 df-lmod 20797 df-lss 20867 df-lmhm 20958 df-lvec 21039 df-sra 21109 df-rgmod 21110 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-phl 21565 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-haus 23231 df-fil 23762 df-flim 23855 df-xms 24236 df-ms 24237 df-nm 24498 df-ngp 24499 df-nlm 24502 df-clm 24991 df-cph 25096 df-cfil 25183 df-cmet 25185 df-cms 25263 |
| This theorem is referenced by: pjthlem2 25366 |
| Copyright terms: Public domain | W3C validator |