Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem1 Structured version   Visualization version   GIF version

Theorem lcmineqlem1 40486
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.)
Hypotheses
Ref Expression
lcmineqlem1.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem1.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem1.3 (𝜑𝑀 ∈ ℕ)
lcmineqlem1.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem1 (𝜑𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑘)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem lcmineqlem1
StepHypRef Expression
1 lcmineqlem1.1 . 2 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 elunitcn 13385 . . . . 5 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
3 ax-1cn 11109 . . . . . . . . . 10 1 ∈ ℂ
4 negsub 11449 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 + -𝑥) = (1 − 𝑥))
53, 4mpan 688 . . . . . . . . 9 (𝑥 ∈ ℂ → (1 + -𝑥) = (1 − 𝑥))
65oveq1d 7372 . . . . . . . 8 (𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = ((1 − 𝑥)↑(𝑁𝑀)))
76adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((1 + -𝑥)↑(𝑁𝑀)) = ((1 − 𝑥)↑(𝑁𝑀)))
8 negcl 11401 . . . . . . . . 9 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
9 1cnd 11150 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
10 lcmineqlem1.4 . . . . . . . . . . 11 (𝜑𝑀𝑁)
11 lcmineqlem1.3 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
1211nnnn0d 12473 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ0)
13 lcmineqlem1.2 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
1413nnnn0d 12473 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
15 nn0sub 12463 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
1612, 14, 15syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
1710, 16mpbid 231 . . . . . . . . . 10 (𝜑 → (𝑁𝑀) ∈ ℕ0)
18 binom 15715 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ -𝑥 ∈ ℂ ∧ (𝑁𝑀) ∈ ℕ0) → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
19183com23 1126 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝑁𝑀) ∈ ℕ0 ∧ -𝑥 ∈ ℂ) → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
20193expia 1121 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝑁𝑀) ∈ ℕ0) → (-𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)))))
219, 17, 20syl2anc 584 . . . . . . . . 9 (𝜑 → (-𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)))))
228, 21syl5 34 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)))))
2322imp 407 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
247, 23eqtr3d 2778 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
25 elfzelz 13441 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℤ)
2613nnzd 12526 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℤ)
2711nnzd 12526 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℤ)
28 zsubcl 12545 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
2926, 27, 28syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁𝑀) ∈ ℤ)
30 zsubcl 12545 . . . . . . . . . . . . . . . . . . 19 (((𝑁𝑀) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁𝑀) − 𝑘) ∈ ℤ)
3129, 30sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℤ) → ((𝑁𝑀) − 𝑘) ∈ ℤ)
3225, 31sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀) − 𝑘) ∈ ℤ)
33 1exp 13997 . . . . . . . . . . . . . . . . 17 (((𝑁𝑀) − 𝑘) ∈ ℤ → (1↑((𝑁𝑀) − 𝑘)) = 1)
3432, 33syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (1↑((𝑁𝑀) − 𝑘)) = 1)
35343adant2 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (1↑((𝑁𝑀) − 𝑘)) = 1)
3635oveq1d 7372 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = (1 · (-𝑥𝑘)))
3783ad2ant2 1134 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → -𝑥 ∈ ℂ)
38 elfznn0 13534 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℕ0)
39383ad2ant3 1135 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → 𝑘 ∈ ℕ0)
40 expcl 13985 . . . . . . . . . . . . . . . 16 ((-𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-𝑥𝑘) ∈ ℂ)
4137, 39, 40syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (-𝑥𝑘) ∈ ℂ)
4241mulid2d 11173 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (1 · (-𝑥𝑘)) = (-𝑥𝑘))
4336, 42eqtrd 2776 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = (-𝑥𝑘))
44 mulm1 11596 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (-1 · 𝑥) = -𝑥)
4544oveq1d 7372 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ((-1 · 𝑥)↑𝑘) = (-𝑥𝑘))
46453ad2ant2 1134 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((-1 · 𝑥)↑𝑘) = (-𝑥𝑘))
4743, 46eqtr4d 2779 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = ((-1 · 𝑥)↑𝑘))
48 neg1cn 12267 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
49 mulexp 14007 . . . . . . . . . . . . . . 15 ((-1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
5048, 49mp3an1 1448 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
5138, 50sylan2 593 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
52513adant1 1130 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
5347, 52eqtrd 2776 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = ((-1↑𝑘) · (𝑥𝑘)))
5453oveq2d 7373 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = (((𝑁𝑀)C𝑘) · ((-1↑𝑘) · (𝑥𝑘))))
55 bccl 14222 . . . . . . . . . . . . . 14 (((𝑁𝑀) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
5617, 25, 55syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
57563adant2 1131 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
5857nn0cnd 12475 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℂ)
59 expcl 13985 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
6048, 39, 59sylancr 587 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (-1↑𝑘) ∈ ℂ)
61 expcl 13985 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
6238, 61sylan2 593 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (𝑥𝑘) ∈ ℂ)
63623adant1 1130 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (𝑥𝑘) ∈ ℂ)
6458, 60, 63mulassd 11178 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((((𝑁𝑀)C𝑘) · (-1↑𝑘)) · (𝑥𝑘)) = (((𝑁𝑀)C𝑘) · ((-1↑𝑘) · (𝑥𝑘))))
6554, 64eqtr4d 2779 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = ((((𝑁𝑀)C𝑘) · (-1↑𝑘)) · (𝑥𝑘)))
6658, 60mulcomd 11176 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · (-1↑𝑘)) = ((-1↑𝑘) · ((𝑁𝑀)C𝑘)))
6766oveq1d 7372 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((((𝑁𝑀)C𝑘) · (-1↑𝑘)) · (𝑥𝑘)) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
6865, 67eqtrd 2776 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
69683expa 1118 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
7069sumeq2dv 15588 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
7124, 70eqtrd 2776 . . . . 5 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
722, 71sylan2 593 . . . 4 ((𝜑𝑥 ∈ (0[,]1)) → ((1 − 𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
7372oveq2d 7373 . . 3 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) = ((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))))
7473itgeq2dv 25146 . 2 (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
751, 74eqtrid 2788 1 (𝜑𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5105  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cle 11190  cmin 11385  -cneg 11386  cn 12153  0cn0 12413  cz 12499  [,]cicc 13267  ...cfz 13424  cexp 13967  Ccbc 14202  Σcsu 15570  citg 24982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-itg 24987
This theorem is referenced by:  lcmineqlem2  40487
  Copyright terms: Public domain W3C validator