Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem1 Structured version   Visualization version   GIF version

Theorem lcmineqlem1 42010
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.)
Hypotheses
Ref Expression
lcmineqlem1.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem1.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem1.3 (𝜑𝑀 ∈ ℕ)
lcmineqlem1.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem1 (𝜑𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑘)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem lcmineqlem1
StepHypRef Expression
1 lcmineqlem1.1 . 2 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 elunitcn 13504 . . . . 5 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
3 ax-1cn 11210 . . . . . . . . . 10 1 ∈ ℂ
4 negsub 11554 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 + -𝑥) = (1 − 𝑥))
53, 4mpan 690 . . . . . . . . 9 (𝑥 ∈ ℂ → (1 + -𝑥) = (1 − 𝑥))
65oveq1d 7445 . . . . . . . 8 (𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = ((1 − 𝑥)↑(𝑁𝑀)))
76adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((1 + -𝑥)↑(𝑁𝑀)) = ((1 − 𝑥)↑(𝑁𝑀)))
8 negcl 11505 . . . . . . . . 9 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
9 1cnd 11253 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
10 lcmineqlem1.4 . . . . . . . . . . 11 (𝜑𝑀𝑁)
11 lcmineqlem1.3 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
1211nnnn0d 12584 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ0)
13 lcmineqlem1.2 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
1413nnnn0d 12584 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
15 nn0sub 12573 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
1612, 14, 15syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
1710, 16mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑁𝑀) ∈ ℕ0)
18 binom 15862 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ -𝑥 ∈ ℂ ∧ (𝑁𝑀) ∈ ℕ0) → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
19183com23 1125 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝑁𝑀) ∈ ℕ0 ∧ -𝑥 ∈ ℂ) → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
20193expia 1120 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝑁𝑀) ∈ ℕ0) → (-𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)))))
219, 17, 20syl2anc 584 . . . . . . . . 9 (𝜑 → (-𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)))))
228, 21syl5 34 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)))))
2322imp 406 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
247, 23eqtr3d 2776 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
25 elfzelz 13560 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℤ)
2613nnzd 12637 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℤ)
2711nnzd 12637 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℤ)
28 zsubcl 12656 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
2926, 27, 28syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁𝑀) ∈ ℤ)
30 zsubcl 12656 . . . . . . . . . . . . . . . . . . 19 (((𝑁𝑀) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁𝑀) − 𝑘) ∈ ℤ)
3129, 30sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℤ) → ((𝑁𝑀) − 𝑘) ∈ ℤ)
3225, 31sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀) − 𝑘) ∈ ℤ)
33 1exp 14128 . . . . . . . . . . . . . . . . 17 (((𝑁𝑀) − 𝑘) ∈ ℤ → (1↑((𝑁𝑀) − 𝑘)) = 1)
3432, 33syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (1↑((𝑁𝑀) − 𝑘)) = 1)
35343adant2 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (1↑((𝑁𝑀) − 𝑘)) = 1)
3635oveq1d 7445 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = (1 · (-𝑥𝑘)))
3783ad2ant2 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → -𝑥 ∈ ℂ)
38 elfznn0 13656 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℕ0)
39383ad2ant3 1134 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → 𝑘 ∈ ℕ0)
40 expcl 14116 . . . . . . . . . . . . . . . 16 ((-𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-𝑥𝑘) ∈ ℂ)
4137, 39, 40syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (-𝑥𝑘) ∈ ℂ)
4241mullidd 11276 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (1 · (-𝑥𝑘)) = (-𝑥𝑘))
4336, 42eqtrd 2774 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = (-𝑥𝑘))
44 mulm1 11701 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (-1 · 𝑥) = -𝑥)
4544oveq1d 7445 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ((-1 · 𝑥)↑𝑘) = (-𝑥𝑘))
46453ad2ant2 1133 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((-1 · 𝑥)↑𝑘) = (-𝑥𝑘))
4743, 46eqtr4d 2777 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = ((-1 · 𝑥)↑𝑘))
48 neg1cn 12377 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
49 mulexp 14138 . . . . . . . . . . . . . . 15 ((-1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
5048, 49mp3an1 1447 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
5138, 50sylan2 593 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
52513adant1 1129 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
5347, 52eqtrd 2774 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = ((-1↑𝑘) · (𝑥𝑘)))
5453oveq2d 7446 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = (((𝑁𝑀)C𝑘) · ((-1↑𝑘) · (𝑥𝑘))))
55 bccl 14357 . . . . . . . . . . . . . 14 (((𝑁𝑀) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
5617, 25, 55syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
57563adant2 1130 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
5857nn0cnd 12586 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℂ)
59 expcl 14116 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
6048, 39, 59sylancr 587 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (-1↑𝑘) ∈ ℂ)
61 expcl 14116 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
6238, 61sylan2 593 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (𝑥𝑘) ∈ ℂ)
63623adant1 1129 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (𝑥𝑘) ∈ ℂ)
6458, 60, 63mulassd 11281 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((((𝑁𝑀)C𝑘) · (-1↑𝑘)) · (𝑥𝑘)) = (((𝑁𝑀)C𝑘) · ((-1↑𝑘) · (𝑥𝑘))))
6554, 64eqtr4d 2777 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = ((((𝑁𝑀)C𝑘) · (-1↑𝑘)) · (𝑥𝑘)))
6658, 60mulcomd 11279 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · (-1↑𝑘)) = ((-1↑𝑘) · ((𝑁𝑀)C𝑘)))
6766oveq1d 7445 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((((𝑁𝑀)C𝑘) · (-1↑𝑘)) · (𝑥𝑘)) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
6865, 67eqtrd 2774 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
69683expa 1117 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
7069sumeq2dv 15734 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
7124, 70eqtrd 2774 . . . . 5 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
722, 71sylan2 593 . . . 4 ((𝜑𝑥 ∈ (0[,]1)) → ((1 − 𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
7372oveq2d 7446 . . 3 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) = ((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))))
7473itgeq2dv 25831 . 2 (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
751, 74eqtrid 2786 1 (𝜑𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105   class class class wbr 5147  (class class class)co 7430  cc 11150  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  cle 11293  cmin 11489  -cneg 11490  cn 12263  0cn0 12523  cz 12610  [,]cicc 13386  ...cfz 13543  cexp 14098  Ccbc 14337  Σcsu 15718  citg 25666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-icc 13390  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-itg 25671
This theorem is referenced by:  lcmineqlem2  42011
  Copyright terms: Public domain W3C validator