Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem1 Structured version   Visualization version   GIF version

Theorem lcmineqlem1 42030
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.)
Hypotheses
Ref Expression
lcmineqlem1.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem1.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem1.3 (𝜑𝑀 ∈ ℕ)
lcmineqlem1.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem1 (𝜑𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑘)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem lcmineqlem1
StepHypRef Expression
1 lcmineqlem1.1 . 2 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 elunitcn 13508 . . . . 5 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
3 ax-1cn 11213 . . . . . . . . . 10 1 ∈ ℂ
4 negsub 11557 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 + -𝑥) = (1 − 𝑥))
53, 4mpan 690 . . . . . . . . 9 (𝑥 ∈ ℂ → (1 + -𝑥) = (1 − 𝑥))
65oveq1d 7446 . . . . . . . 8 (𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = ((1 − 𝑥)↑(𝑁𝑀)))
76adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((1 + -𝑥)↑(𝑁𝑀)) = ((1 − 𝑥)↑(𝑁𝑀)))
8 negcl 11508 . . . . . . . . 9 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
9 1cnd 11256 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
10 lcmineqlem1.4 . . . . . . . . . . 11 (𝜑𝑀𝑁)
11 lcmineqlem1.3 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
1211nnnn0d 12587 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ0)
13 lcmineqlem1.2 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
1413nnnn0d 12587 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
15 nn0sub 12576 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
1612, 14, 15syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
1710, 16mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑁𝑀) ∈ ℕ0)
18 binom 15866 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ -𝑥 ∈ ℂ ∧ (𝑁𝑀) ∈ ℕ0) → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
19183com23 1127 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝑁𝑀) ∈ ℕ0 ∧ -𝑥 ∈ ℂ) → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
20193expia 1122 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝑁𝑀) ∈ ℕ0) → (-𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)))))
219, 17, 20syl2anc 584 . . . . . . . . 9 (𝜑 → (-𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)))))
228, 21syl5 34 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)))))
2322imp 406 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
247, 23eqtr3d 2779 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
25 elfzelz 13564 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℤ)
2613nnzd 12640 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℤ)
2711nnzd 12640 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℤ)
28 zsubcl 12659 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
2926, 27, 28syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁𝑀) ∈ ℤ)
30 zsubcl 12659 . . . . . . . . . . . . . . . . . . 19 (((𝑁𝑀) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁𝑀) − 𝑘) ∈ ℤ)
3129, 30sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℤ) → ((𝑁𝑀) − 𝑘) ∈ ℤ)
3225, 31sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀) − 𝑘) ∈ ℤ)
33 1exp 14132 . . . . . . . . . . . . . . . . 17 (((𝑁𝑀) − 𝑘) ∈ ℤ → (1↑((𝑁𝑀) − 𝑘)) = 1)
3432, 33syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (1↑((𝑁𝑀) − 𝑘)) = 1)
35343adant2 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (1↑((𝑁𝑀) − 𝑘)) = 1)
3635oveq1d 7446 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = (1 · (-𝑥𝑘)))
3783ad2ant2 1135 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → -𝑥 ∈ ℂ)
38 elfznn0 13660 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℕ0)
39383ad2ant3 1136 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → 𝑘 ∈ ℕ0)
40 expcl 14120 . . . . . . . . . . . . . . . 16 ((-𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-𝑥𝑘) ∈ ℂ)
4137, 39, 40syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (-𝑥𝑘) ∈ ℂ)
4241mullidd 11279 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (1 · (-𝑥𝑘)) = (-𝑥𝑘))
4336, 42eqtrd 2777 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = (-𝑥𝑘))
44 mulm1 11704 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (-1 · 𝑥) = -𝑥)
4544oveq1d 7446 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ((-1 · 𝑥)↑𝑘) = (-𝑥𝑘))
46453ad2ant2 1135 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((-1 · 𝑥)↑𝑘) = (-𝑥𝑘))
4743, 46eqtr4d 2780 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = ((-1 · 𝑥)↑𝑘))
48 neg1cn 12380 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
49 mulexp 14142 . . . . . . . . . . . . . . 15 ((-1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
5048, 49mp3an1 1450 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
5138, 50sylan2 593 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
52513adant1 1131 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
5347, 52eqtrd 2777 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = ((-1↑𝑘) · (𝑥𝑘)))
5453oveq2d 7447 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = (((𝑁𝑀)C𝑘) · ((-1↑𝑘) · (𝑥𝑘))))
55 bccl 14361 . . . . . . . . . . . . . 14 (((𝑁𝑀) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
5617, 25, 55syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
57563adant2 1132 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
5857nn0cnd 12589 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℂ)
59 expcl 14120 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
6048, 39, 59sylancr 587 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (-1↑𝑘) ∈ ℂ)
61 expcl 14120 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
6238, 61sylan2 593 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (𝑥𝑘) ∈ ℂ)
63623adant1 1131 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (𝑥𝑘) ∈ ℂ)
6458, 60, 63mulassd 11284 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((((𝑁𝑀)C𝑘) · (-1↑𝑘)) · (𝑥𝑘)) = (((𝑁𝑀)C𝑘) · ((-1↑𝑘) · (𝑥𝑘))))
6554, 64eqtr4d 2780 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = ((((𝑁𝑀)C𝑘) · (-1↑𝑘)) · (𝑥𝑘)))
6658, 60mulcomd 11282 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · (-1↑𝑘)) = ((-1↑𝑘) · ((𝑁𝑀)C𝑘)))
6766oveq1d 7446 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((((𝑁𝑀)C𝑘) · (-1↑𝑘)) · (𝑥𝑘)) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
6865, 67eqtrd 2777 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
69683expa 1119 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
7069sumeq2dv 15738 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
7124, 70eqtrd 2777 . . . . 5 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
722, 71sylan2 593 . . . 4 ((𝜑𝑥 ∈ (0[,]1)) → ((1 − 𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
7372oveq2d 7447 . . 3 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) = ((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))))
7473itgeq2dv 25817 . 2 (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
751, 74eqtrid 2789 1 (𝜑𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cle 11296  cmin 11492  -cneg 11493  cn 12266  0cn0 12526  cz 12613  [,]cicc 13390  ...cfz 13547  cexp 14102  Ccbc 14341  Σcsu 15722  citg 25653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-itg 25658
This theorem is referenced by:  lcmineqlem2  42031
  Copyright terms: Public domain W3C validator