Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem1 Structured version   Visualization version   GIF version

Theorem lcmineqlem1 39965
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.)
Hypotheses
Ref Expression
lcmineqlem1.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem1.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem1.3 (𝜑𝑀 ∈ ℕ)
lcmineqlem1.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem1 (𝜑𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑘)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem lcmineqlem1
StepHypRef Expression
1 lcmineqlem1.1 . 2 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 elunitcn 13129 . . . . 5 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
3 ax-1cn 10860 . . . . . . . . . 10 1 ∈ ℂ
4 negsub 11199 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 + -𝑥) = (1 − 𝑥))
53, 4mpan 686 . . . . . . . . 9 (𝑥 ∈ ℂ → (1 + -𝑥) = (1 − 𝑥))
65oveq1d 7270 . . . . . . . 8 (𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = ((1 − 𝑥)↑(𝑁𝑀)))
76adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((1 + -𝑥)↑(𝑁𝑀)) = ((1 − 𝑥)↑(𝑁𝑀)))
8 negcl 11151 . . . . . . . . 9 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
9 1cnd 10901 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
10 lcmineqlem1.4 . . . . . . . . . . 11 (𝜑𝑀𝑁)
11 lcmineqlem1.3 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
1211nnnn0d 12223 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ0)
13 lcmineqlem1.2 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
1413nnnn0d 12223 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
15 nn0sub 12213 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
1612, 14, 15syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
1710, 16mpbid 231 . . . . . . . . . 10 (𝜑 → (𝑁𝑀) ∈ ℕ0)
18 binom 15470 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ -𝑥 ∈ ℂ ∧ (𝑁𝑀) ∈ ℕ0) → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
19183com23 1124 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝑁𝑀) ∈ ℕ0 ∧ -𝑥 ∈ ℂ) → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
20193expia 1119 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝑁𝑀) ∈ ℕ0) → (-𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)))))
219, 17, 20syl2anc 583 . . . . . . . . 9 (𝜑 → (-𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)))))
228, 21syl5 34 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)))))
2322imp 406 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
247, 23eqtr3d 2780 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
25 elfzelz 13185 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℤ)
2613nnzd 12354 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℤ)
2711nnzd 12354 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℤ)
28 zsubcl 12292 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
2926, 27, 28syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁𝑀) ∈ ℤ)
30 zsubcl 12292 . . . . . . . . . . . . . . . . . . 19 (((𝑁𝑀) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁𝑀) − 𝑘) ∈ ℤ)
3129, 30sylan 579 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℤ) → ((𝑁𝑀) − 𝑘) ∈ ℤ)
3225, 31sylan2 592 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀) − 𝑘) ∈ ℤ)
33 1exp 13740 . . . . . . . . . . . . . . . . 17 (((𝑁𝑀) − 𝑘) ∈ ℤ → (1↑((𝑁𝑀) − 𝑘)) = 1)
3432, 33syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (1↑((𝑁𝑀) − 𝑘)) = 1)
35343adant2 1129 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (1↑((𝑁𝑀) − 𝑘)) = 1)
3635oveq1d 7270 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = (1 · (-𝑥𝑘)))
3783ad2ant2 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → -𝑥 ∈ ℂ)
38 elfznn0 13278 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℕ0)
39383ad2ant3 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → 𝑘 ∈ ℕ0)
40 expcl 13728 . . . . . . . . . . . . . . . 16 ((-𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-𝑥𝑘) ∈ ℂ)
4137, 39, 40syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (-𝑥𝑘) ∈ ℂ)
4241mulid2d 10924 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (1 · (-𝑥𝑘)) = (-𝑥𝑘))
4336, 42eqtrd 2778 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = (-𝑥𝑘))
44 mulm1 11346 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (-1 · 𝑥) = -𝑥)
4544oveq1d 7270 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ((-1 · 𝑥)↑𝑘) = (-𝑥𝑘))
46453ad2ant2 1132 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((-1 · 𝑥)↑𝑘) = (-𝑥𝑘))
4743, 46eqtr4d 2781 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = ((-1 · 𝑥)↑𝑘))
48 neg1cn 12017 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
49 mulexp 13750 . . . . . . . . . . . . . . 15 ((-1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
5048, 49mp3an1 1446 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
5138, 50sylan2 592 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
52513adant1 1128 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
5347, 52eqtrd 2778 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = ((-1↑𝑘) · (𝑥𝑘)))
5453oveq2d 7271 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = (((𝑁𝑀)C𝑘) · ((-1↑𝑘) · (𝑥𝑘))))
55 bccl 13964 . . . . . . . . . . . . . 14 (((𝑁𝑀) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
5617, 25, 55syl2an 595 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
57563adant2 1129 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
5857nn0cnd 12225 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℂ)
59 expcl 13728 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
6048, 39, 59sylancr 586 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (-1↑𝑘) ∈ ℂ)
61 expcl 13728 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
6238, 61sylan2 592 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (𝑥𝑘) ∈ ℂ)
63623adant1 1128 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (𝑥𝑘) ∈ ℂ)
6458, 60, 63mulassd 10929 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((((𝑁𝑀)C𝑘) · (-1↑𝑘)) · (𝑥𝑘)) = (((𝑁𝑀)C𝑘) · ((-1↑𝑘) · (𝑥𝑘))))
6554, 64eqtr4d 2781 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = ((((𝑁𝑀)C𝑘) · (-1↑𝑘)) · (𝑥𝑘)))
6658, 60mulcomd 10927 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · (-1↑𝑘)) = ((-1↑𝑘) · ((𝑁𝑀)C𝑘)))
6766oveq1d 7270 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((((𝑁𝑀)C𝑘) · (-1↑𝑘)) · (𝑥𝑘)) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
6865, 67eqtrd 2778 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
69683expa 1116 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
7069sumeq2dv 15343 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
7124, 70eqtrd 2778 . . . . 5 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
722, 71sylan2 592 . . . 4 ((𝜑𝑥 ∈ (0[,]1)) → ((1 − 𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
7372oveq2d 7271 . . 3 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) = ((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))))
7473itgeq2dv 24851 . 2 (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
751, 74syl5eq 2791 1 (𝜑𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cle 10941  cmin 11135  -cneg 11136  cn 11903  0cn0 12163  cz 12249  [,]cicc 13011  ...cfz 13168  cexp 13710  Ccbc 13944  Σcsu 15325  citg 24687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-itg 24692
This theorem is referenced by:  lcmineqlem2  39966
  Copyright terms: Public domain W3C validator