Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem1 Structured version   Visualization version   GIF version

Theorem lcmineqlem1 42061
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.)
Hypotheses
Ref Expression
lcmineqlem1.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem1.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem1.3 (𝜑𝑀 ∈ ℕ)
lcmineqlem1.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem1 (𝜑𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑘)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem lcmineqlem1
StepHypRef Expression
1 lcmineqlem1.1 . 2 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 elunitcn 13365 . . . . 5 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
3 ax-1cn 11061 . . . . . . . . . 10 1 ∈ ℂ
4 negsub 11406 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 + -𝑥) = (1 − 𝑥))
53, 4mpan 690 . . . . . . . . 9 (𝑥 ∈ ℂ → (1 + -𝑥) = (1 − 𝑥))
65oveq1d 7361 . . . . . . . 8 (𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = ((1 − 𝑥)↑(𝑁𝑀)))
76adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((1 + -𝑥)↑(𝑁𝑀)) = ((1 − 𝑥)↑(𝑁𝑀)))
8 negcl 11357 . . . . . . . . 9 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
9 1cnd 11104 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
10 lcmineqlem1.4 . . . . . . . . . . 11 (𝜑𝑀𝑁)
11 lcmineqlem1.3 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
1211nnnn0d 12439 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ0)
13 lcmineqlem1.2 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
1413nnnn0d 12439 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
15 nn0sub 12428 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
1612, 14, 15syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
1710, 16mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑁𝑀) ∈ ℕ0)
18 binom 15734 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ -𝑥 ∈ ℂ ∧ (𝑁𝑀) ∈ ℕ0) → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
19183com23 1126 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝑁𝑀) ∈ ℕ0 ∧ -𝑥 ∈ ℂ) → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
20193expia 1121 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝑁𝑀) ∈ ℕ0) → (-𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)))))
219, 17, 20syl2anc 584 . . . . . . . . 9 (𝜑 → (-𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)))))
228, 21syl5 34 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℂ → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)))))
2322imp 406 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((1 + -𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
247, 23eqtr3d 2768 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))))
25 elfzelz 13421 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℤ)
2613nnzd 12492 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℤ)
2711nnzd 12492 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℤ)
28 zsubcl 12511 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
2926, 27, 28syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁𝑀) ∈ ℤ)
30 zsubcl 12511 . . . . . . . . . . . . . . . . . . 19 (((𝑁𝑀) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁𝑀) − 𝑘) ∈ ℤ)
3129, 30sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℤ) → ((𝑁𝑀) − 𝑘) ∈ ℤ)
3225, 31sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀) − 𝑘) ∈ ℤ)
33 1exp 13995 . . . . . . . . . . . . . . . . 17 (((𝑁𝑀) − 𝑘) ∈ ℤ → (1↑((𝑁𝑀) − 𝑘)) = 1)
3432, 33syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (1↑((𝑁𝑀) − 𝑘)) = 1)
35343adant2 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (1↑((𝑁𝑀) − 𝑘)) = 1)
3635oveq1d 7361 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = (1 · (-𝑥𝑘)))
3783ad2ant2 1134 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → -𝑥 ∈ ℂ)
38 elfznn0 13517 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℕ0)
39383ad2ant3 1135 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → 𝑘 ∈ ℕ0)
40 expcl 13983 . . . . . . . . . . . . . . . 16 ((-𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-𝑥𝑘) ∈ ℂ)
4137, 39, 40syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (-𝑥𝑘) ∈ ℂ)
4241mullidd 11127 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (1 · (-𝑥𝑘)) = (-𝑥𝑘))
4336, 42eqtrd 2766 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = (-𝑥𝑘))
44 mulm1 11555 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (-1 · 𝑥) = -𝑥)
4544oveq1d 7361 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ((-1 · 𝑥)↑𝑘) = (-𝑥𝑘))
46453ad2ant2 1134 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((-1 · 𝑥)↑𝑘) = (-𝑥𝑘))
4743, 46eqtr4d 2769 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = ((-1 · 𝑥)↑𝑘))
48 neg1cn 12107 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
49 mulexp 14005 . . . . . . . . . . . . . . 15 ((-1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
5048, 49mp3an1 1450 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
5138, 50sylan2 593 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
52513adant1 1130 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((-1 · 𝑥)↑𝑘) = ((-1↑𝑘) · (𝑥𝑘)))
5347, 52eqtrd 2766 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘)) = ((-1↑𝑘) · (𝑥𝑘)))
5453oveq2d 7362 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = (((𝑁𝑀)C𝑘) · ((-1↑𝑘) · (𝑥𝑘))))
55 bccl 14226 . . . . . . . . . . . . . 14 (((𝑁𝑀) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
5617, 25, 55syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
57563adant2 1131 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
5857nn0cnd 12441 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℂ)
59 expcl 13983 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
6048, 39, 59sylancr 587 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (-1↑𝑘) ∈ ℂ)
61 expcl 13983 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
6238, 61sylan2 593 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (𝑥𝑘) ∈ ℂ)
63623adant1 1130 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (𝑥𝑘) ∈ ℂ)
6458, 60, 63mulassd 11132 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((((𝑁𝑀)C𝑘) · (-1↑𝑘)) · (𝑥𝑘)) = (((𝑁𝑀)C𝑘) · ((-1↑𝑘) · (𝑥𝑘))))
6554, 64eqtr4d 2769 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = ((((𝑁𝑀)C𝑘) · (-1↑𝑘)) · (𝑥𝑘)))
6658, 60mulcomd 11130 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · (-1↑𝑘)) = ((-1↑𝑘) · ((𝑁𝑀)C𝑘)))
6766oveq1d 7361 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → ((((𝑁𝑀)C𝑘) · (-1↑𝑘)) · (𝑥𝑘)) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
6865, 67eqtrd 2766 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
69683expa 1118 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
7069sumeq2dv 15606 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁𝑀))(((𝑁𝑀)C𝑘) · ((1↑((𝑁𝑀) − 𝑘)) · (-𝑥𝑘))) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
7124, 70eqtrd 2766 . . . . 5 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
722, 71sylan2 593 . . . 4 ((𝜑𝑥 ∈ (0[,]1)) → ((1 − 𝑥)↑(𝑁𝑀)) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘)))
7372oveq2d 7362 . . 3 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) = ((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))))
7473itgeq2dv 25708 . 2 (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
751, 74eqtrid 2778 1 (𝜑𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5091  (class class class)co 7346  cc 11001  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008  cle 11144  cmin 11341  -cneg 11342  cn 12122  0cn0 12378  cz 12465  [,]cicc 13245  ...cfz 13404  cexp 13965  Ccbc 14206  Σcsu 15590  citg 25544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-icc 13249  df-fz 13405  df-fzo 13552  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-sum 15591  df-itg 25549
This theorem is referenced by:  lcmineqlem2  42062
  Copyright terms: Public domain W3C validator