![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pserdv2 | Structured version Visualization version GIF version |
Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
Ref | Expression |
---|---|
pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
psercn.s | ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
psercn.m | ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) |
pserdv.b | ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) |
Ref | Expression |
---|---|
pserdv2 | ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pserf.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
2 | pserf.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) | |
3 | pserf.a | . . 3 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
4 | pserf.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
5 | psercn.s | . . 3 ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) | |
6 | psercn.m | . . 3 ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) | |
7 | pserdv.b | . . 3 ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | pserdv 26359 | . 2 ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚)))) |
9 | nn0uz 12888 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
10 | nnuz 12889 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
11 | 1e0p1 12743 | . . . . . . 7 ⊢ 1 = (0 + 1) | |
12 | 11 | fveq2i 6894 | . . . . . 6 ⊢ (ℤ≥‘1) = (ℤ≥‘(0 + 1)) |
13 | 10, 12 | eqtri 2756 | . . . . 5 ⊢ ℕ = (ℤ≥‘(0 + 1)) |
14 | id 22 | . . . . . . 7 ⊢ (𝑘 = (1 + 𝑚) → 𝑘 = (1 + 𝑚)) | |
15 | fveq2 6891 | . . . . . . 7 ⊢ (𝑘 = (1 + 𝑚) → (𝐴‘𝑘) = (𝐴‘(1 + 𝑚))) | |
16 | 14, 15 | oveq12d 7432 | . . . . . 6 ⊢ (𝑘 = (1 + 𝑚) → (𝑘 · (𝐴‘𝑘)) = ((1 + 𝑚) · (𝐴‘(1 + 𝑚)))) |
17 | oveq1 7421 | . . . . . . 7 ⊢ (𝑘 = (1 + 𝑚) → (𝑘 − 1) = ((1 + 𝑚) − 1)) | |
18 | 17 | oveq2d 7430 | . . . . . 6 ⊢ (𝑘 = (1 + 𝑚) → (𝑦↑(𝑘 − 1)) = (𝑦↑((1 + 𝑚) − 1))) |
19 | 16, 18 | oveq12d 7432 | . . . . 5 ⊢ (𝑘 = (1 + 𝑚) → ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))) = (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1)))) |
20 | 1zzd 12617 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 1 ∈ ℤ) | |
21 | 0zd 12594 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 0 ∈ ℤ) | |
22 | nncn 12244 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℂ) | |
23 | 22 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ) |
24 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐴:ℕ0⟶ℂ) |
25 | nnnn0 12503 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
26 | ffvelcdm 7085 | . . . . . . . 8 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) | |
27 | 24, 25, 26 | syl2an 595 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → (𝐴‘𝑘) ∈ ℂ) |
28 | 23, 27 | mulcld 11258 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝐴‘𝑘)) ∈ ℂ) |
29 | cnvimass 6079 | . . . . . . . . . . 11 ⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs | |
30 | absf 15310 | . . . . . . . . . . . 12 ⊢ abs:ℂ⟶ℝ | |
31 | 30 | fdmi 6728 | . . . . . . . . . . 11 ⊢ dom abs = ℂ |
32 | 29, 31 | sseqtri 4014 | . . . . . . . . . 10 ⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
33 | 5, 32 | eqsstri 4012 | . . . . . . . . 9 ⊢ 𝑆 ⊆ ℂ |
34 | 33 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
35 | 34 | sselda 3978 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ℂ) |
36 | nnm1nn0 12537 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0) | |
37 | expcl 14070 | . . . . . . 7 ⊢ ((𝑦 ∈ ℂ ∧ (𝑘 − 1) ∈ ℕ0) → (𝑦↑(𝑘 − 1)) ∈ ℂ) | |
38 | 35, 36, 37 | syl2an 595 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → (𝑦↑(𝑘 − 1)) ∈ ℂ) |
39 | 28, 38 | mulcld 11258 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))) ∈ ℂ) |
40 | 9, 13, 19, 20, 21, 39 | isumshft 15811 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))) = Σ𝑚 ∈ ℕ0 (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1)))) |
41 | ax-1cn 11190 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
42 | nn0cn 12506 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ) | |
43 | 42 | adantl 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ) |
44 | addcom 11424 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (1 + 𝑚) = (𝑚 + 1)) | |
45 | 41, 43, 44 | sylancr 586 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (1 + 𝑚) = (𝑚 + 1)) |
46 | 45 | fveq2d 6895 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (𝐴‘(1 + 𝑚)) = (𝐴‘(𝑚 + 1))) |
47 | 45, 46 | oveq12d 7432 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → ((1 + 𝑚) · (𝐴‘(1 + 𝑚))) = ((𝑚 + 1) · (𝐴‘(𝑚 + 1)))) |
48 | pncan2 11491 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((1 + 𝑚) − 1) = 𝑚) | |
49 | 41, 43, 48 | sylancr 586 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → ((1 + 𝑚) − 1) = 𝑚) |
50 | 49 | oveq2d 7430 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑦↑((1 + 𝑚) − 1)) = (𝑦↑𝑚)) |
51 | 47, 50 | oveq12d 7432 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))) = (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚))) |
52 | 51 | sumeq2dv 15675 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑚 ∈ ℕ0 (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))) = Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚))) |
53 | 40, 52 | eqtr2d 2769 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚)) = Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1)))) |
54 | 53 | mpteq2dva 5242 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑆 ↦ Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚))) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
55 | 8, 54 | eqtrd 2768 | 1 ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {crab 3428 ⊆ wss 3945 ifcif 4524 ↦ cmpt 5225 ◡ccnv 5671 dom cdm 5672 “ cima 5675 ∘ ccom 5676 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 supcsup 9457 ℂcc 11130 ℝcr 11131 0cc0 11132 1c1 11133 + caddc 11135 · cmul 11137 ℝ*cxr 11271 < clt 11272 − cmin 11468 / cdiv 11895 ℕcn 12236 2c2 12291 ℕ0cn0 12496 ℤ≥cuz 12846 [,)cico 13352 seqcseq 13992 ↑cexp 14052 abscabs 15207 ⇝ cli 15454 Σcsu 15658 ballcbl 21259 D cdv 25785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 ax-addf 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-q 12957 df-rp 13001 df-xneg 13118 df-xadd 13119 df-xmul 13120 df-ioo 13354 df-ico 13356 df-icc 13357 df-fz 13511 df-fzo 13654 df-fl 13783 df-seq 13993 df-exp 14053 df-hash 14316 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15441 df-clim 15458 df-rlim 15459 df-sum 15659 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17397 df-topn 17398 df-0g 17416 df-gsum 17417 df-topgen 17418 df-pt 17419 df-prds 17422 df-xrs 17477 df-qtop 17482 df-imas 17483 df-xps 17485 df-mre 17559 df-mrc 17560 df-acs 17562 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-mulg 19017 df-cntz 19261 df-cmn 19730 df-psmet 21264 df-xmet 21265 df-met 21266 df-bl 21267 df-mopn 21268 df-fbas 21269 df-fg 21270 df-cnfld 21273 df-top 22789 df-topon 22806 df-topsp 22828 df-bases 22842 df-cld 22916 df-ntr 22917 df-cls 22918 df-nei 22995 df-lp 23033 df-perf 23034 df-cn 23124 df-cnp 23125 df-haus 23212 df-cmp 23284 df-tx 23459 df-hmeo 23652 df-fil 23743 df-fm 23835 df-flim 23836 df-flf 23837 df-xms 24219 df-ms 24220 df-tms 24221 df-cncf 24791 df-limc 25788 df-dv 25789 df-ulm 26306 |
This theorem is referenced by: logtayl 26587 binomcxplemdvsum 43786 |
Copyright terms: Public domain | W3C validator |