MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdv2 Structured version   Visualization version   GIF version

Theorem pserdv2 26492
Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
pserdv.b 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
Assertion
Ref Expression
pserdv2 (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴𝑘)) · (𝑦↑(𝑘 − 1)))))
Distinct variable groups:   𝑗,𝑎,𝑘,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑘,𝑦   𝐵,𝑗,𝑘,𝑥,𝑦   𝑗,𝐺,𝑘,𝑟,𝑦   𝑆,𝑎,𝑗,𝑘,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐵(𝑛,𝑟,𝑎)   𝑅(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem pserdv2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 pserf.g . . 3 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
2 pserf.f . . 3 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
3 pserf.a . . 3 (𝜑𝐴:ℕ0⟶ℂ)
4 pserf.r . . 3 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
5 psercn.s . . 3 𝑆 = (abs “ (0[,)𝑅))
6 psercn.m . . 3 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
7 pserdv.b . . 3 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
81, 2, 3, 4, 5, 6, 7pserdv 26491 . 2 (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦𝑚))))
9 nn0uz 12945 . . . . 5 0 = (ℤ‘0)
10 nnuz 12946 . . . . . 6 ℕ = (ℤ‘1)
11 1e0p1 12800 . . . . . . 7 1 = (0 + 1)
1211fveq2i 6923 . . . . . 6 (ℤ‘1) = (ℤ‘(0 + 1))
1310, 12eqtri 2768 . . . . 5 ℕ = (ℤ‘(0 + 1))
14 id 22 . . . . . . 7 (𝑘 = (1 + 𝑚) → 𝑘 = (1 + 𝑚))
15 fveq2 6920 . . . . . . 7 (𝑘 = (1 + 𝑚) → (𝐴𝑘) = (𝐴‘(1 + 𝑚)))
1614, 15oveq12d 7466 . . . . . 6 (𝑘 = (1 + 𝑚) → (𝑘 · (𝐴𝑘)) = ((1 + 𝑚) · (𝐴‘(1 + 𝑚))))
17 oveq1 7455 . . . . . . 7 (𝑘 = (1 + 𝑚) → (𝑘 − 1) = ((1 + 𝑚) − 1))
1817oveq2d 7464 . . . . . 6 (𝑘 = (1 + 𝑚) → (𝑦↑(𝑘 − 1)) = (𝑦↑((1 + 𝑚) − 1)))
1916, 18oveq12d 7466 . . . . 5 (𝑘 = (1 + 𝑚) → ((𝑘 · (𝐴𝑘)) · (𝑦↑(𝑘 − 1))) = (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))))
20 1zzd 12674 . . . . 5 ((𝜑𝑦𝑆) → 1 ∈ ℤ)
21 0zd 12651 . . . . 5 ((𝜑𝑦𝑆) → 0 ∈ ℤ)
22 nncn 12301 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
2322adantl 481 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
243adantr 480 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝐴:ℕ0⟶ℂ)
25 nnnn0 12560 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
26 ffvelcdm 7115 . . . . . . . 8 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
2724, 25, 26syl2an 595 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
2823, 27mulcld 11310 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝐴𝑘)) ∈ ℂ)
29 cnvimass 6111 . . . . . . . . . . 11 (abs “ (0[,)𝑅)) ⊆ dom abs
30 absf 15386 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
3130fdmi 6758 . . . . . . . . . . 11 dom abs = ℂ
3229, 31sseqtri 4045 . . . . . . . . . 10 (abs “ (0[,)𝑅)) ⊆ ℂ
335, 32eqsstri 4043 . . . . . . . . 9 𝑆 ⊆ ℂ
3433a1i 11 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
3534sselda 4008 . . . . . . 7 ((𝜑𝑦𝑆) → 𝑦 ∈ ℂ)
36 nnm1nn0 12594 . . . . . . 7 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
37 expcl 14130 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (𝑘 − 1) ∈ ℕ0) → (𝑦↑(𝑘 − 1)) ∈ ℂ)
3835, 36, 37syl2an 595 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑘 ∈ ℕ) → (𝑦↑(𝑘 − 1)) ∈ ℂ)
3928, 38mulcld 11310 . . . . 5 (((𝜑𝑦𝑆) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐴𝑘)) · (𝑦↑(𝑘 − 1))) ∈ ℂ)
409, 13, 19, 20, 21, 39isumshft 15887 . . . 4 ((𝜑𝑦𝑆) → Σ𝑘 ∈ ℕ ((𝑘 · (𝐴𝑘)) · (𝑦↑(𝑘 − 1))) = Σ𝑚 ∈ ℕ0 (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))))
41 ax-1cn 11242 . . . . . . . 8 1 ∈ ℂ
42 nn0cn 12563 . . . . . . . . 9 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
4342adantl 481 . . . . . . . 8 (((𝜑𝑦𝑆) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
44 addcom 11476 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (1 + 𝑚) = (𝑚 + 1))
4541, 43, 44sylancr 586 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑚 ∈ ℕ0) → (1 + 𝑚) = (𝑚 + 1))
4645fveq2d 6924 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑚 ∈ ℕ0) → (𝐴‘(1 + 𝑚)) = (𝐴‘(𝑚 + 1)))
4745, 46oveq12d 7466 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑚 ∈ ℕ0) → ((1 + 𝑚) · (𝐴‘(1 + 𝑚))) = ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))
48 pncan2 11543 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((1 + 𝑚) − 1) = 𝑚)
4941, 43, 48sylancr 586 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑚 ∈ ℕ0) → ((1 + 𝑚) − 1) = 𝑚)
5049oveq2d 7464 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑦↑((1 + 𝑚) − 1)) = (𝑦𝑚))
5147, 50oveq12d 7466 . . . . 5 (((𝜑𝑦𝑆) ∧ 𝑚 ∈ ℕ0) → (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))) = (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦𝑚)))
5251sumeq2dv 15750 . . . 4 ((𝜑𝑦𝑆) → Σ𝑚 ∈ ℕ0 (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))) = Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦𝑚)))
5340, 52eqtr2d 2781 . . 3 ((𝜑𝑦𝑆) → Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦𝑚)) = Σ𝑘 ∈ ℕ ((𝑘 · (𝐴𝑘)) · (𝑦↑(𝑘 − 1))))
5453mpteq2dva 5266 . 2 (𝜑 → (𝑦𝑆 ↦ Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦𝑚))) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴𝑘)) · (𝑦↑(𝑘 − 1)))))
558, 54eqtrd 2780 1 (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴𝑘)) · (𝑦↑(𝑘 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  wss 3976  ifcif 4548  cmpt 5249  ccnv 5699  dom cdm 5700  cima 5703  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  *cxr 11323   < clt 11324  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cuz 12903  [,)cico 13409  seqcseq 14052  cexp 14112  abscabs 15283  cli 15530  Σcsu 15734  ballcbl 21374   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-ulm 26438
This theorem is referenced by:  logtayl  26720  binomcxplemdvsum  44324
  Copyright terms: Public domain W3C validator