| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pserdv2 | Structured version Visualization version GIF version | ||
| Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
| pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| psercn.s | ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
| psercn.m | ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) |
| pserdv.b | ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) |
| Ref | Expression |
|---|---|
| pserdv2 | ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 2 | pserf.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) | |
| 3 | pserf.a | . . 3 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 4 | pserf.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 5 | psercn.s | . . 3 ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) | |
| 6 | psercn.m | . . 3 ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) | |
| 7 | pserdv.b | . . 3 ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | pserdv 26355 | . 2 ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚)))) |
| 9 | nn0uz 12795 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 10 | nnuz 12796 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 11 | 1e0p1 12651 | . . . . . . 7 ⊢ 1 = (0 + 1) | |
| 12 | 11 | fveq2i 6829 | . . . . . 6 ⊢ (ℤ≥‘1) = (ℤ≥‘(0 + 1)) |
| 13 | 10, 12 | eqtri 2752 | . . . . 5 ⊢ ℕ = (ℤ≥‘(0 + 1)) |
| 14 | id 22 | . . . . . . 7 ⊢ (𝑘 = (1 + 𝑚) → 𝑘 = (1 + 𝑚)) | |
| 15 | fveq2 6826 | . . . . . . 7 ⊢ (𝑘 = (1 + 𝑚) → (𝐴‘𝑘) = (𝐴‘(1 + 𝑚))) | |
| 16 | 14, 15 | oveq12d 7371 | . . . . . 6 ⊢ (𝑘 = (1 + 𝑚) → (𝑘 · (𝐴‘𝑘)) = ((1 + 𝑚) · (𝐴‘(1 + 𝑚)))) |
| 17 | oveq1 7360 | . . . . . . 7 ⊢ (𝑘 = (1 + 𝑚) → (𝑘 − 1) = ((1 + 𝑚) − 1)) | |
| 18 | 17 | oveq2d 7369 | . . . . . 6 ⊢ (𝑘 = (1 + 𝑚) → (𝑦↑(𝑘 − 1)) = (𝑦↑((1 + 𝑚) − 1))) |
| 19 | 16, 18 | oveq12d 7371 | . . . . 5 ⊢ (𝑘 = (1 + 𝑚) → ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))) = (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1)))) |
| 20 | 1zzd 12524 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 1 ∈ ℤ) | |
| 21 | 0zd 12501 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 0 ∈ ℤ) | |
| 22 | nncn 12154 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℂ) | |
| 23 | 22 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ) |
| 24 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐴:ℕ0⟶ℂ) |
| 25 | nnnn0 12409 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 26 | ffvelcdm 7019 | . . . . . . . 8 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) | |
| 27 | 24, 25, 26 | syl2an 596 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → (𝐴‘𝑘) ∈ ℂ) |
| 28 | 23, 27 | mulcld 11154 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝐴‘𝑘)) ∈ ℂ) |
| 29 | cnvimass 6037 | . . . . . . . . . . 11 ⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs | |
| 30 | absf 15263 | . . . . . . . . . . . 12 ⊢ abs:ℂ⟶ℝ | |
| 31 | 30 | fdmi 6667 | . . . . . . . . . . 11 ⊢ dom abs = ℂ |
| 32 | 29, 31 | sseqtri 3986 | . . . . . . . . . 10 ⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
| 33 | 5, 32 | eqsstri 3984 | . . . . . . . . 9 ⊢ 𝑆 ⊆ ℂ |
| 34 | 33 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 35 | 34 | sselda 3937 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ℂ) |
| 36 | nnm1nn0 12443 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0) | |
| 37 | expcl 14004 | . . . . . . 7 ⊢ ((𝑦 ∈ ℂ ∧ (𝑘 − 1) ∈ ℕ0) → (𝑦↑(𝑘 − 1)) ∈ ℂ) | |
| 38 | 35, 36, 37 | syl2an 596 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → (𝑦↑(𝑘 − 1)) ∈ ℂ) |
| 39 | 28, 38 | mulcld 11154 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))) ∈ ℂ) |
| 40 | 9, 13, 19, 20, 21, 39 | isumshft 15764 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))) = Σ𝑚 ∈ ℕ0 (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1)))) |
| 41 | ax-1cn 11086 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 42 | nn0cn 12412 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ) | |
| 43 | 42 | adantl 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ) |
| 44 | addcom 11320 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (1 + 𝑚) = (𝑚 + 1)) | |
| 45 | 41, 43, 44 | sylancr 587 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (1 + 𝑚) = (𝑚 + 1)) |
| 46 | 45 | fveq2d 6830 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (𝐴‘(1 + 𝑚)) = (𝐴‘(𝑚 + 1))) |
| 47 | 45, 46 | oveq12d 7371 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → ((1 + 𝑚) · (𝐴‘(1 + 𝑚))) = ((𝑚 + 1) · (𝐴‘(𝑚 + 1)))) |
| 48 | pncan2 11388 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((1 + 𝑚) − 1) = 𝑚) | |
| 49 | 41, 43, 48 | sylancr 587 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → ((1 + 𝑚) − 1) = 𝑚) |
| 50 | 49 | oveq2d 7369 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑦↑((1 + 𝑚) − 1)) = (𝑦↑𝑚)) |
| 51 | 47, 50 | oveq12d 7371 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))) = (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚))) |
| 52 | 51 | sumeq2dv 15627 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑚 ∈ ℕ0 (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))) = Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚))) |
| 53 | 40, 52 | eqtr2d 2765 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚)) = Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1)))) |
| 54 | 53 | mpteq2dva 5188 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑆 ↦ Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚))) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
| 55 | 8, 54 | eqtrd 2764 | 1 ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 ⊆ wss 3905 ifcif 4478 ↦ cmpt 5176 ◡ccnv 5622 dom cdm 5623 “ cima 5626 ∘ ccom 5627 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 supcsup 9349 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 ℝ*cxr 11167 < clt 11168 − cmin 11365 / cdiv 11795 ℕcn 12146 2c2 12201 ℕ0cn0 12402 ℤ≥cuz 12753 [,)cico 13268 seqcseq 13926 ↑cexp 13986 abscabs 15159 ⇝ cli 15409 Σcsu 15611 ballcbl 21266 D cdv 25780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-seq 13927 df-exp 13987 df-hash 14256 df-shft 14992 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-limsup 15396 df-clim 15413 df-rlim 15414 df-sum 15612 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-cmp 23290 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-limc 25783 df-dv 25784 df-ulm 26302 |
| This theorem is referenced by: logtayl 26585 binomcxplemdvsum 44328 |
| Copyright terms: Public domain | W3C validator |