| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pserdv2 | Structured version Visualization version GIF version | ||
| Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
| pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| psercn.s | ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
| psercn.m | ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) |
| pserdv.b | ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) |
| Ref | Expression |
|---|---|
| pserdv2 | ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 2 | pserf.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) | |
| 3 | pserf.a | . . 3 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 4 | pserf.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 5 | psercn.s | . . 3 ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) | |
| 6 | psercn.m | . . 3 ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) | |
| 7 | pserdv.b | . . 3 ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | pserdv 26367 | . 2 ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚)))) |
| 9 | nn0uz 12776 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 10 | nnuz 12777 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 11 | 1e0p1 12636 | . . . . . . 7 ⊢ 1 = (0 + 1) | |
| 12 | 11 | fveq2i 6831 | . . . . . 6 ⊢ (ℤ≥‘1) = (ℤ≥‘(0 + 1)) |
| 13 | 10, 12 | eqtri 2756 | . . . . 5 ⊢ ℕ = (ℤ≥‘(0 + 1)) |
| 14 | id 22 | . . . . . . 7 ⊢ (𝑘 = (1 + 𝑚) → 𝑘 = (1 + 𝑚)) | |
| 15 | fveq2 6828 | . . . . . . 7 ⊢ (𝑘 = (1 + 𝑚) → (𝐴‘𝑘) = (𝐴‘(1 + 𝑚))) | |
| 16 | 14, 15 | oveq12d 7370 | . . . . . 6 ⊢ (𝑘 = (1 + 𝑚) → (𝑘 · (𝐴‘𝑘)) = ((1 + 𝑚) · (𝐴‘(1 + 𝑚)))) |
| 17 | oveq1 7359 | . . . . . . 7 ⊢ (𝑘 = (1 + 𝑚) → (𝑘 − 1) = ((1 + 𝑚) − 1)) | |
| 18 | 17 | oveq2d 7368 | . . . . . 6 ⊢ (𝑘 = (1 + 𝑚) → (𝑦↑(𝑘 − 1)) = (𝑦↑((1 + 𝑚) − 1))) |
| 19 | 16, 18 | oveq12d 7370 | . . . . 5 ⊢ (𝑘 = (1 + 𝑚) → ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))) = (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1)))) |
| 20 | 1zzd 12509 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 1 ∈ ℤ) | |
| 21 | 0zd 12487 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 0 ∈ ℤ) | |
| 22 | nncn 12140 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℂ) | |
| 23 | 22 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ) |
| 24 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐴:ℕ0⟶ℂ) |
| 25 | nnnn0 12395 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 26 | ffvelcdm 7020 | . . . . . . . 8 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) | |
| 27 | 24, 25, 26 | syl2an 596 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → (𝐴‘𝑘) ∈ ℂ) |
| 28 | 23, 27 | mulcld 11139 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝐴‘𝑘)) ∈ ℂ) |
| 29 | cnvimass 6035 | . . . . . . . . . . 11 ⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs | |
| 30 | absf 15247 | . . . . . . . . . . . 12 ⊢ abs:ℂ⟶ℝ | |
| 31 | 30 | fdmi 6667 | . . . . . . . . . . 11 ⊢ dom abs = ℂ |
| 32 | 29, 31 | sseqtri 3979 | . . . . . . . . . 10 ⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
| 33 | 5, 32 | eqsstri 3977 | . . . . . . . . 9 ⊢ 𝑆 ⊆ ℂ |
| 34 | 33 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 35 | 34 | sselda 3930 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ℂ) |
| 36 | nnm1nn0 12429 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0) | |
| 37 | expcl 13988 | . . . . . . 7 ⊢ ((𝑦 ∈ ℂ ∧ (𝑘 − 1) ∈ ℕ0) → (𝑦↑(𝑘 − 1)) ∈ ℂ) | |
| 38 | 35, 36, 37 | syl2an 596 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → (𝑦↑(𝑘 − 1)) ∈ ℂ) |
| 39 | 28, 38 | mulcld 11139 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))) ∈ ℂ) |
| 40 | 9, 13, 19, 20, 21, 39 | isumshft 15748 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))) = Σ𝑚 ∈ ℕ0 (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1)))) |
| 41 | ax-1cn 11071 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 42 | nn0cn 12398 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ) | |
| 43 | 42 | adantl 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ) |
| 44 | addcom 11306 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (1 + 𝑚) = (𝑚 + 1)) | |
| 45 | 41, 43, 44 | sylancr 587 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (1 + 𝑚) = (𝑚 + 1)) |
| 46 | 45 | fveq2d 6832 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (𝐴‘(1 + 𝑚)) = (𝐴‘(𝑚 + 1))) |
| 47 | 45, 46 | oveq12d 7370 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → ((1 + 𝑚) · (𝐴‘(1 + 𝑚))) = ((𝑚 + 1) · (𝐴‘(𝑚 + 1)))) |
| 48 | pncan2 11374 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((1 + 𝑚) − 1) = 𝑚) | |
| 49 | 41, 43, 48 | sylancr 587 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → ((1 + 𝑚) − 1) = 𝑚) |
| 50 | 49 | oveq2d 7368 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑦↑((1 + 𝑚) − 1)) = (𝑦↑𝑚)) |
| 51 | 47, 50 | oveq12d 7370 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))) = (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚))) |
| 52 | 51 | sumeq2dv 15611 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑚 ∈ ℕ0 (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))) = Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚))) |
| 53 | 40, 52 | eqtr2d 2769 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚)) = Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1)))) |
| 54 | 53 | mpteq2dva 5186 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑆 ↦ Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚))) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
| 55 | 8, 54 | eqtrd 2768 | 1 ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 ifcif 4474 ↦ cmpt 5174 ◡ccnv 5618 dom cdm 5619 “ cima 5622 ∘ ccom 5623 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 supcsup 9331 ℂcc 11011 ℝcr 11012 0cc0 11013 1c1 11014 + caddc 11016 · cmul 11018 ℝ*cxr 11152 < clt 11153 − cmin 11351 / cdiv 11781 ℕcn 12132 2c2 12187 ℕ0cn0 12388 ℤ≥cuz 12738 [,)cico 13249 seqcseq 13910 ↑cexp 13970 abscabs 15143 ⇝ cli 15393 Σcsu 15595 ballcbl 21280 D cdv 25792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-seq 13911 df-exp 13971 df-hash 14240 df-shft 14976 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-limsup 15380 df-clim 15397 df-rlim 15398 df-sum 15596 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-haus 23231 df-cmp 23303 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-limc 25795 df-dv 25796 df-ulm 26314 |
| This theorem is referenced by: logtayl 26597 binomcxplemdvsum 44472 |
| Copyright terms: Public domain | W3C validator |