| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pserdv2 | Structured version Visualization version GIF version | ||
| Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
| pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| psercn.s | ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
| psercn.m | ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) |
| pserdv.b | ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) |
| Ref | Expression |
|---|---|
| pserdv2 | ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 2 | pserf.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) | |
| 3 | pserf.a | . . 3 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 4 | pserf.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 5 | psercn.s | . . 3 ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) | |
| 6 | psercn.m | . . 3 ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) | |
| 7 | pserdv.b | . . 3 ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | pserdv 26364 | . 2 ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚)))) |
| 9 | nn0uz 12771 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 10 | nnuz 12772 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 11 | 1e0p1 12627 | . . . . . . 7 ⊢ 1 = (0 + 1) | |
| 12 | 11 | fveq2i 6825 | . . . . . 6 ⊢ (ℤ≥‘1) = (ℤ≥‘(0 + 1)) |
| 13 | 10, 12 | eqtri 2754 | . . . . 5 ⊢ ℕ = (ℤ≥‘(0 + 1)) |
| 14 | id 22 | . . . . . . 7 ⊢ (𝑘 = (1 + 𝑚) → 𝑘 = (1 + 𝑚)) | |
| 15 | fveq2 6822 | . . . . . . 7 ⊢ (𝑘 = (1 + 𝑚) → (𝐴‘𝑘) = (𝐴‘(1 + 𝑚))) | |
| 16 | 14, 15 | oveq12d 7364 | . . . . . 6 ⊢ (𝑘 = (1 + 𝑚) → (𝑘 · (𝐴‘𝑘)) = ((1 + 𝑚) · (𝐴‘(1 + 𝑚)))) |
| 17 | oveq1 7353 | . . . . . . 7 ⊢ (𝑘 = (1 + 𝑚) → (𝑘 − 1) = ((1 + 𝑚) − 1)) | |
| 18 | 17 | oveq2d 7362 | . . . . . 6 ⊢ (𝑘 = (1 + 𝑚) → (𝑦↑(𝑘 − 1)) = (𝑦↑((1 + 𝑚) − 1))) |
| 19 | 16, 18 | oveq12d 7364 | . . . . 5 ⊢ (𝑘 = (1 + 𝑚) → ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))) = (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1)))) |
| 20 | 1zzd 12500 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 1 ∈ ℤ) | |
| 21 | 0zd 12477 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 0 ∈ ℤ) | |
| 22 | nncn 12130 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℂ) | |
| 23 | 22 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ) |
| 24 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐴:ℕ0⟶ℂ) |
| 25 | nnnn0 12385 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 26 | ffvelcdm 7014 | . . . . . . . 8 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) | |
| 27 | 24, 25, 26 | syl2an 596 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → (𝐴‘𝑘) ∈ ℂ) |
| 28 | 23, 27 | mulcld 11129 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝐴‘𝑘)) ∈ ℂ) |
| 29 | cnvimass 6031 | . . . . . . . . . . 11 ⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs | |
| 30 | absf 15242 | . . . . . . . . . . . 12 ⊢ abs:ℂ⟶ℝ | |
| 31 | 30 | fdmi 6662 | . . . . . . . . . . 11 ⊢ dom abs = ℂ |
| 32 | 29, 31 | sseqtri 3983 | . . . . . . . . . 10 ⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
| 33 | 5, 32 | eqsstri 3981 | . . . . . . . . 9 ⊢ 𝑆 ⊆ ℂ |
| 34 | 33 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 35 | 34 | sselda 3934 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ℂ) |
| 36 | nnm1nn0 12419 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0) | |
| 37 | expcl 13983 | . . . . . . 7 ⊢ ((𝑦 ∈ ℂ ∧ (𝑘 − 1) ∈ ℕ0) → (𝑦↑(𝑘 − 1)) ∈ ℂ) | |
| 38 | 35, 36, 37 | syl2an 596 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → (𝑦↑(𝑘 − 1)) ∈ ℂ) |
| 39 | 28, 38 | mulcld 11129 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))) ∈ ℂ) |
| 40 | 9, 13, 19, 20, 21, 39 | isumshft 15743 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))) = Σ𝑚 ∈ ℕ0 (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1)))) |
| 41 | ax-1cn 11061 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 42 | nn0cn 12388 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ) | |
| 43 | 42 | adantl 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ) |
| 44 | addcom 11296 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (1 + 𝑚) = (𝑚 + 1)) | |
| 45 | 41, 43, 44 | sylancr 587 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (1 + 𝑚) = (𝑚 + 1)) |
| 46 | 45 | fveq2d 6826 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (𝐴‘(1 + 𝑚)) = (𝐴‘(𝑚 + 1))) |
| 47 | 45, 46 | oveq12d 7364 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → ((1 + 𝑚) · (𝐴‘(1 + 𝑚))) = ((𝑚 + 1) · (𝐴‘(𝑚 + 1)))) |
| 48 | pncan2 11364 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((1 + 𝑚) − 1) = 𝑚) | |
| 49 | 41, 43, 48 | sylancr 587 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → ((1 + 𝑚) − 1) = 𝑚) |
| 50 | 49 | oveq2d 7362 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑦↑((1 + 𝑚) − 1)) = (𝑦↑𝑚)) |
| 51 | 47, 50 | oveq12d 7364 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))) = (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚))) |
| 52 | 51 | sumeq2dv 15606 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑚 ∈ ℕ0 (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))) = Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚))) |
| 53 | 40, 52 | eqtr2d 2767 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚)) = Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1)))) |
| 54 | 53 | mpteq2dva 5184 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑆 ↦ Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚))) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
| 55 | 8, 54 | eqtrd 2766 | 1 ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3902 ifcif 4475 ↦ cmpt 5172 ◡ccnv 5615 dom cdm 5616 “ cima 5619 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 supcsup 9324 ℂcc 11001 ℝcr 11002 0cc0 11003 1c1 11004 + caddc 11006 · cmul 11008 ℝ*cxr 11142 < clt 11143 − cmin 11341 / cdiv 11771 ℕcn 12122 2c2 12177 ℕ0cn0 12378 ℤ≥cuz 12729 [,)cico 13244 seqcseq 13905 ↑cexp 13965 abscabs 15138 ⇝ cli 15388 Σcsu 15590 ballcbl 21276 D cdv 25789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-seq 13906 df-exp 13966 df-hash 14235 df-shft 14971 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-limsup 15375 df-clim 15392 df-rlim 15393 df-sum 15591 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-fbas 21286 df-fg 21287 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-lp 23049 df-perf 23050 df-cn 23140 df-cnp 23141 df-haus 23228 df-cmp 23300 df-tx 23475 df-hmeo 23668 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-xms 24233 df-ms 24234 df-tms 24235 df-cncf 24796 df-limc 25792 df-dv 25793 df-ulm 26311 |
| This theorem is referenced by: logtayl 26594 binomcxplemdvsum 44387 |
| Copyright terms: Public domain | W3C validator |