| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pserdv2 | Structured version Visualization version GIF version | ||
| Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
| pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| psercn.s | ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
| psercn.m | ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) |
| pserdv.b | ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) |
| Ref | Expression |
|---|---|
| pserdv2 | ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 2 | pserf.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) | |
| 3 | pserf.a | . . 3 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 4 | pserf.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 5 | psercn.s | . . 3 ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) | |
| 6 | psercn.m | . . 3 ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) | |
| 7 | pserdv.b | . . 3 ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | pserdv 26346 | . 2 ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚)))) |
| 9 | nn0uz 12842 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 10 | nnuz 12843 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 11 | 1e0p1 12698 | . . . . . . 7 ⊢ 1 = (0 + 1) | |
| 12 | 11 | fveq2i 6864 | . . . . . 6 ⊢ (ℤ≥‘1) = (ℤ≥‘(0 + 1)) |
| 13 | 10, 12 | eqtri 2753 | . . . . 5 ⊢ ℕ = (ℤ≥‘(0 + 1)) |
| 14 | id 22 | . . . . . . 7 ⊢ (𝑘 = (1 + 𝑚) → 𝑘 = (1 + 𝑚)) | |
| 15 | fveq2 6861 | . . . . . . 7 ⊢ (𝑘 = (1 + 𝑚) → (𝐴‘𝑘) = (𝐴‘(1 + 𝑚))) | |
| 16 | 14, 15 | oveq12d 7408 | . . . . . 6 ⊢ (𝑘 = (1 + 𝑚) → (𝑘 · (𝐴‘𝑘)) = ((1 + 𝑚) · (𝐴‘(1 + 𝑚)))) |
| 17 | oveq1 7397 | . . . . . . 7 ⊢ (𝑘 = (1 + 𝑚) → (𝑘 − 1) = ((1 + 𝑚) − 1)) | |
| 18 | 17 | oveq2d 7406 | . . . . . 6 ⊢ (𝑘 = (1 + 𝑚) → (𝑦↑(𝑘 − 1)) = (𝑦↑((1 + 𝑚) − 1))) |
| 19 | 16, 18 | oveq12d 7408 | . . . . 5 ⊢ (𝑘 = (1 + 𝑚) → ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))) = (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1)))) |
| 20 | 1zzd 12571 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 1 ∈ ℤ) | |
| 21 | 0zd 12548 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 0 ∈ ℤ) | |
| 22 | nncn 12201 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℂ) | |
| 23 | 22 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ) |
| 24 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐴:ℕ0⟶ℂ) |
| 25 | nnnn0 12456 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 26 | ffvelcdm 7056 | . . . . . . . 8 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) | |
| 27 | 24, 25, 26 | syl2an 596 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → (𝐴‘𝑘) ∈ ℂ) |
| 28 | 23, 27 | mulcld 11201 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝐴‘𝑘)) ∈ ℂ) |
| 29 | cnvimass 6056 | . . . . . . . . . . 11 ⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs | |
| 30 | absf 15311 | . . . . . . . . . . . 12 ⊢ abs:ℂ⟶ℝ | |
| 31 | 30 | fdmi 6702 | . . . . . . . . . . 11 ⊢ dom abs = ℂ |
| 32 | 29, 31 | sseqtri 3998 | . . . . . . . . . 10 ⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
| 33 | 5, 32 | eqsstri 3996 | . . . . . . . . 9 ⊢ 𝑆 ⊆ ℂ |
| 34 | 33 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 35 | 34 | sselda 3949 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ℂ) |
| 36 | nnm1nn0 12490 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0) | |
| 37 | expcl 14051 | . . . . . . 7 ⊢ ((𝑦 ∈ ℂ ∧ (𝑘 − 1) ∈ ℕ0) → (𝑦↑(𝑘 − 1)) ∈ ℂ) | |
| 38 | 35, 36, 37 | syl2an 596 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → (𝑦↑(𝑘 − 1)) ∈ ℂ) |
| 39 | 28, 38 | mulcld 11201 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))) ∈ ℂ) |
| 40 | 9, 13, 19, 20, 21, 39 | isumshft 15812 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))) = Σ𝑚 ∈ ℕ0 (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1)))) |
| 41 | ax-1cn 11133 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 42 | nn0cn 12459 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ) | |
| 43 | 42 | adantl 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ) |
| 44 | addcom 11367 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (1 + 𝑚) = (𝑚 + 1)) | |
| 45 | 41, 43, 44 | sylancr 587 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (1 + 𝑚) = (𝑚 + 1)) |
| 46 | 45 | fveq2d 6865 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (𝐴‘(1 + 𝑚)) = (𝐴‘(𝑚 + 1))) |
| 47 | 45, 46 | oveq12d 7408 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → ((1 + 𝑚) · (𝐴‘(1 + 𝑚))) = ((𝑚 + 1) · (𝐴‘(𝑚 + 1)))) |
| 48 | pncan2 11435 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((1 + 𝑚) − 1) = 𝑚) | |
| 49 | 41, 43, 48 | sylancr 587 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → ((1 + 𝑚) − 1) = 𝑚) |
| 50 | 49 | oveq2d 7406 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑦↑((1 + 𝑚) − 1)) = (𝑦↑𝑚)) |
| 51 | 47, 50 | oveq12d 7408 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))) = (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚))) |
| 52 | 51 | sumeq2dv 15675 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑚 ∈ ℕ0 (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))) = Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚))) |
| 53 | 40, 52 | eqtr2d 2766 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚)) = Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1)))) |
| 54 | 53 | mpteq2dva 5203 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑆 ↦ Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦↑𝑚))) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
| 55 | 8, 54 | eqtrd 2765 | 1 ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ⊆ wss 3917 ifcif 4491 ↦ cmpt 5191 ◡ccnv 5640 dom cdm 5641 “ cima 5644 ∘ ccom 5645 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 supcsup 9398 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 ℝ*cxr 11214 < clt 11215 − cmin 11412 / cdiv 11842 ℕcn 12193 2c2 12248 ℕ0cn0 12449 ℤ≥cuz 12800 [,)cico 13315 seqcseq 13973 ↑cexp 14033 abscabs 15207 ⇝ cli 15457 Σcsu 15659 ballcbl 21258 D cdv 25771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-cmp 23281 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-limc 25774 df-dv 25775 df-ulm 26293 |
| This theorem is referenced by: logtayl 26576 binomcxplemdvsum 44351 |
| Copyright terms: Public domain | W3C validator |