MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdv2 Structured version   Visualization version   GIF version

Theorem pserdv2 26368
Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
pserdv.b 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
Assertion
Ref Expression
pserdv2 (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴𝑘)) · (𝑦↑(𝑘 − 1)))))
Distinct variable groups:   𝑗,𝑎,𝑘,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑘,𝑦   𝐵,𝑗,𝑘,𝑥,𝑦   𝑗,𝐺,𝑘,𝑟,𝑦   𝑆,𝑎,𝑗,𝑘,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐵(𝑛,𝑟,𝑎)   𝑅(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem pserdv2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 pserf.g . . 3 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
2 pserf.f . . 3 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
3 pserf.a . . 3 (𝜑𝐴:ℕ0⟶ℂ)
4 pserf.r . . 3 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
5 psercn.s . . 3 𝑆 = (abs “ (0[,)𝑅))
6 psercn.m . . 3 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
7 pserdv.b . . 3 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
81, 2, 3, 4, 5, 6, 7pserdv 26367 . 2 (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦𝑚))))
9 nn0uz 12776 . . . . 5 0 = (ℤ‘0)
10 nnuz 12777 . . . . . 6 ℕ = (ℤ‘1)
11 1e0p1 12636 . . . . . . 7 1 = (0 + 1)
1211fveq2i 6831 . . . . . 6 (ℤ‘1) = (ℤ‘(0 + 1))
1310, 12eqtri 2756 . . . . 5 ℕ = (ℤ‘(0 + 1))
14 id 22 . . . . . . 7 (𝑘 = (1 + 𝑚) → 𝑘 = (1 + 𝑚))
15 fveq2 6828 . . . . . . 7 (𝑘 = (1 + 𝑚) → (𝐴𝑘) = (𝐴‘(1 + 𝑚)))
1614, 15oveq12d 7370 . . . . . 6 (𝑘 = (1 + 𝑚) → (𝑘 · (𝐴𝑘)) = ((1 + 𝑚) · (𝐴‘(1 + 𝑚))))
17 oveq1 7359 . . . . . . 7 (𝑘 = (1 + 𝑚) → (𝑘 − 1) = ((1 + 𝑚) − 1))
1817oveq2d 7368 . . . . . 6 (𝑘 = (1 + 𝑚) → (𝑦↑(𝑘 − 1)) = (𝑦↑((1 + 𝑚) − 1)))
1916, 18oveq12d 7370 . . . . 5 (𝑘 = (1 + 𝑚) → ((𝑘 · (𝐴𝑘)) · (𝑦↑(𝑘 − 1))) = (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))))
20 1zzd 12509 . . . . 5 ((𝜑𝑦𝑆) → 1 ∈ ℤ)
21 0zd 12487 . . . . 5 ((𝜑𝑦𝑆) → 0 ∈ ℤ)
22 nncn 12140 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
2322adantl 481 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
243adantr 480 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝐴:ℕ0⟶ℂ)
25 nnnn0 12395 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
26 ffvelcdm 7020 . . . . . . . 8 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
2724, 25, 26syl2an 596 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
2823, 27mulcld 11139 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝐴𝑘)) ∈ ℂ)
29 cnvimass 6035 . . . . . . . . . . 11 (abs “ (0[,)𝑅)) ⊆ dom abs
30 absf 15247 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
3130fdmi 6667 . . . . . . . . . . 11 dom abs = ℂ
3229, 31sseqtri 3979 . . . . . . . . . 10 (abs “ (0[,)𝑅)) ⊆ ℂ
335, 32eqsstri 3977 . . . . . . . . 9 𝑆 ⊆ ℂ
3433a1i 11 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
3534sselda 3930 . . . . . . 7 ((𝜑𝑦𝑆) → 𝑦 ∈ ℂ)
36 nnm1nn0 12429 . . . . . . 7 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
37 expcl 13988 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (𝑘 − 1) ∈ ℕ0) → (𝑦↑(𝑘 − 1)) ∈ ℂ)
3835, 36, 37syl2an 596 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑘 ∈ ℕ) → (𝑦↑(𝑘 − 1)) ∈ ℂ)
3928, 38mulcld 11139 . . . . 5 (((𝜑𝑦𝑆) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐴𝑘)) · (𝑦↑(𝑘 − 1))) ∈ ℂ)
409, 13, 19, 20, 21, 39isumshft 15748 . . . 4 ((𝜑𝑦𝑆) → Σ𝑘 ∈ ℕ ((𝑘 · (𝐴𝑘)) · (𝑦↑(𝑘 − 1))) = Σ𝑚 ∈ ℕ0 (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))))
41 ax-1cn 11071 . . . . . . . 8 1 ∈ ℂ
42 nn0cn 12398 . . . . . . . . 9 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
4342adantl 481 . . . . . . . 8 (((𝜑𝑦𝑆) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
44 addcom 11306 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (1 + 𝑚) = (𝑚 + 1))
4541, 43, 44sylancr 587 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑚 ∈ ℕ0) → (1 + 𝑚) = (𝑚 + 1))
4645fveq2d 6832 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑚 ∈ ℕ0) → (𝐴‘(1 + 𝑚)) = (𝐴‘(𝑚 + 1)))
4745, 46oveq12d 7370 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑚 ∈ ℕ0) → ((1 + 𝑚) · (𝐴‘(1 + 𝑚))) = ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))
48 pncan2 11374 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((1 + 𝑚) − 1) = 𝑚)
4941, 43, 48sylancr 587 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑚 ∈ ℕ0) → ((1 + 𝑚) − 1) = 𝑚)
5049oveq2d 7368 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑦↑((1 + 𝑚) − 1)) = (𝑦𝑚))
5147, 50oveq12d 7370 . . . . 5 (((𝜑𝑦𝑆) ∧ 𝑚 ∈ ℕ0) → (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))) = (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦𝑚)))
5251sumeq2dv 15611 . . . 4 ((𝜑𝑦𝑆) → Σ𝑚 ∈ ℕ0 (((1 + 𝑚) · (𝐴‘(1 + 𝑚))) · (𝑦↑((1 + 𝑚) − 1))) = Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦𝑚)))
5340, 52eqtr2d 2769 . . 3 ((𝜑𝑦𝑆) → Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦𝑚)) = Σ𝑘 ∈ ℕ ((𝑘 · (𝐴𝑘)) · (𝑦↑(𝑘 − 1))))
5453mpteq2dva 5186 . 2 (𝜑 → (𝑦𝑆 ↦ Σ𝑚 ∈ ℕ0 (((𝑚 + 1) · (𝐴‘(𝑚 + 1))) · (𝑦𝑚))) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴𝑘)) · (𝑦↑(𝑘 − 1)))))
558, 54eqtrd 2768 1 (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴𝑘)) · (𝑦↑(𝑘 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  wss 3898  ifcif 4474  cmpt 5174  ccnv 5618  dom cdm 5619  cima 5622  ccom 5623  wf 6482  cfv 6486  (class class class)co 7352  supcsup 9331  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  *cxr 11152   < clt 11153  cmin 11351   / cdiv 11781  cn 12132  2c2 12187  0cn0 12388  cuz 12738  [,)cico 13249  seqcseq 13910  cexp 13970  abscabs 15143  cli 15393  Σcsu 15595  ballcbl 21280   D cdv 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-cmp 23303  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-ulm 26314
This theorem is referenced by:  logtayl  26597  binomcxplemdvsum  44472
  Copyright terms: Public domain W3C validator