Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remexz Structured version   Visualization version   GIF version

Theorem remexz 42086
Description: Division with rest. (Contributed by metakunt, 15-May-2025.)
Hypotheses
Ref Expression
remexz.1 (𝜑𝑁 ∈ ℤ)
remexz.2 (𝜑𝐴 ∈ ℕ)
Assertion
Ref Expression
remexz (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (0...(𝐴 − 1))𝑁 = ((𝑥 · 𝐴) + 𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦

Proof of Theorem remexz
StepHypRef Expression
1 remexz.1 . . . . 5 (𝜑𝑁 ∈ ℤ)
2 remexz.2 . . . . 5 (𝜑𝐴 ∈ ℕ)
3 zmodfzo 13931 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑁 mod 𝐴) ∈ (0..^𝐴))
41, 2, 3syl2anc 584 . . . 4 (𝜑 → (𝑁 mod 𝐴) ∈ (0..^𝐴))
52nnzd 12638 . . . . 5 (𝜑𝐴 ∈ ℤ)
6 fzoval 13697 . . . . 5 (𝐴 ∈ ℤ → (0..^𝐴) = (0...(𝐴 − 1)))
75, 6syl 17 . . . 4 (𝜑 → (0..^𝐴) = (0...(𝐴 − 1)))
84, 7eleqtrd 2841 . . 3 (𝜑 → (𝑁 mod 𝐴) ∈ (0...(𝐴 − 1)))
9 simpr 484 . . . . . 6 ((𝜑𝑦 = (𝑁 mod 𝐴)) → 𝑦 = (𝑁 mod 𝐴))
109oveq2d 7447 . . . . 5 ((𝜑𝑦 = (𝑁 mod 𝐴)) → ((𝑥 · 𝐴) + 𝑦) = ((𝑥 · 𝐴) + (𝑁 mod 𝐴)))
1110eqeq2d 2746 . . . 4 ((𝜑𝑦 = (𝑁 mod 𝐴)) → (𝑁 = ((𝑥 · 𝐴) + 𝑦) ↔ 𝑁 = ((𝑥 · 𝐴) + (𝑁 mod 𝐴))))
1211rexbidv 3177 . . 3 ((𝜑𝑦 = (𝑁 mod 𝐴)) → (∃𝑥 ∈ ℤ 𝑁 = ((𝑥 · 𝐴) + 𝑦) ↔ ∃𝑥 ∈ ℤ 𝑁 = ((𝑥 · 𝐴) + (𝑁 mod 𝐴))))
13 eqidd 2736 . . . 4 (𝜑 → (𝑁 mod 𝐴) = (𝑁 mod 𝐴))
142nnrpd 13073 . . . . 5 (𝜑𝐴 ∈ ℝ+)
15 modmuladdim 13952 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ+) → ((𝑁 mod 𝐴) = (𝑁 mod 𝐴) → ∃𝑥 ∈ ℤ 𝑁 = ((𝑥 · 𝐴) + (𝑁 mod 𝐴))))
161, 14, 15syl2anc 584 . . . 4 (𝜑 → ((𝑁 mod 𝐴) = (𝑁 mod 𝐴) → ∃𝑥 ∈ ℤ 𝑁 = ((𝑥 · 𝐴) + (𝑁 mod 𝐴))))
1713, 16mpd 15 . . 3 (𝜑 → ∃𝑥 ∈ ℤ 𝑁 = ((𝑥 · 𝐴) + (𝑁 mod 𝐴)))
188, 12, 17rspcedvd 3624 . 2 (𝜑 → ∃𝑦 ∈ (0...(𝐴 − 1))∃𝑥 ∈ ℤ 𝑁 = ((𝑥 · 𝐴) + 𝑦))
19 rexcom 3288 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ (0...(𝐴 − 1))𝑁 = ((𝑥 · 𝐴) + 𝑦) ↔ ∃𝑦 ∈ (0...(𝐴 − 1))∃𝑥 ∈ ℤ 𝑁 = ((𝑥 · 𝐴) + 𝑦))
2018, 19sylibr 234 1 (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (0...(𝐴 − 1))𝑁 = ((𝑥 · 𝐴) + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  cn 12264  cz 12611  +crp 13032  ...cfz 13544  ..^cfzo 13691   mod cmo 13906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907
This theorem is referenced by:  primrootspoweq0  42088  aks6d1c6lem5  42159
  Copyright terms: Public domain W3C validator