| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > primrootscoprbij2 | Structured version Visualization version GIF version | ||
| Description: A bijection between coprime powers of primitive roots and primitive roots. (Contributed by metakunt, 26-Apr-2025.) |
| Ref | Expression |
|---|---|
| primrootscoprbij2.1 | ⊢ 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g‘𝑅)𝑚)) |
| primrootscoprbij2.2 | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| primrootscoprbij2.3 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| primrootscoprbij2.4 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
| primrootscoprbij2.5 | ⊢ (𝜑 → (𝐼 gcd 𝐾) = 1) |
| Ref | Expression |
|---|---|
| primrootscoprbij2 | ⊢ (𝜑 → 𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | primrootscoprbij2.1 | . . 3 ⊢ 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g‘𝑅)𝑚)) | |
| 2 | primrootscoprbij2.2 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
| 3 | 2 | ad3antrrr 730 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝑅 ∈ CMnd) |
| 4 | primrootscoprbij2.3 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 5 | 4 | ad3antrrr 730 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝐾 ∈ ℕ) |
| 6 | primrootscoprbij2.4 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
| 7 | 6 | ad3antrrr 730 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝐼 ∈ ℕ) |
| 8 | simpllr 775 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝑥 ∈ ℕ) | |
| 9 | simplr 768 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝑦 ∈ ℤ) | |
| 10 | primrootscoprbij2.5 | . . . . 5 ⊢ (𝜑 → (𝐼 gcd 𝐾) = 1) | |
| 11 | 10 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → (𝐼 gcd 𝐾) = 1) |
| 12 | simpr 484 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) | |
| 13 | 11, 12 | eqtr3d 2772 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 1 = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) |
| 14 | eqid 2735 | . . 3 ⊢ {𝑤 ∈ (Base‘𝑅) ∣ ∃𝑧 ∈ (Base‘𝑅)(𝑧(+g‘𝑅)𝑤) = (0g‘𝑅)} = {𝑤 ∈ (Base‘𝑅) ∣ ∃𝑧 ∈ (Base‘𝑅)(𝑧(+g‘𝑅)𝑤) = (0g‘𝑅)} | |
| 15 | 1, 3, 5, 7, 8, 9, 13, 14 | primrootscoprbij 42061 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾)) |
| 16 | 6, 4 | jca 511 | . . 3 ⊢ (𝜑 → (𝐼 ∈ ℕ ∧ 𝐾 ∈ ℕ)) |
| 17 | posbezout 42059 | . . 3 ⊢ ((𝐼 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) | |
| 18 | 16, 17 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) |
| 19 | 15, 18 | r19.29vva 3201 | 1 ⊢ (𝜑 → 𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 {crab 3415 ↦ cmpt 5201 –1-1-onto→wf1o 6529 ‘cfv 6530 (class class class)co 7403 1c1 11128 + caddc 11130 · cmul 11132 ℕcn 12238 ℤcz 12586 gcd cgcd 16511 Basecbs 17226 +gcplusg 17269 0gc0g 17451 .gcmg 19048 CMndccmn 19759 PrimRoots cprimroots 42050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-fz 13523 df-fl 13807 df-mod 13885 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-dvds 16271 df-gcd 16512 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-grp 18917 df-minusg 18918 df-mulg 19049 df-cmn 19761 df-abl 19762 df-primroots 42051 |
| This theorem is referenced by: aks6d1c1p5 42071 |
| Copyright terms: Public domain | W3C validator |