Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  primrootscoprbij2 Structured version   Visualization version   GIF version

Theorem primrootscoprbij2 42136
Description: A bijection between coprime powers of primitive roots and primitive roots. (Contributed by metakunt, 26-Apr-2025.)
Hypotheses
Ref Expression
primrootscoprbij2.1 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g𝑅)𝑚))
primrootscoprbij2.2 (𝜑𝑅 ∈ CMnd)
primrootscoprbij2.3 (𝜑𝐾 ∈ ℕ)
primrootscoprbij2.4 (𝜑𝐼 ∈ ℕ)
primrootscoprbij2.5 (𝜑 → (𝐼 gcd 𝐾) = 1)
Assertion
Ref Expression
primrootscoprbij2 (𝜑𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾))
Distinct variable groups:   𝑚,𝐼   𝑚,𝐾   𝑅,𝑚   𝜑,𝑚
Allowed substitution hint:   𝐹(𝑚)

Proof of Theorem primrootscoprbij2
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 primrootscoprbij2.1 . . 3 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g𝑅)𝑚))
2 primrootscoprbij2.2 . . . 4 (𝜑𝑅 ∈ CMnd)
32ad3antrrr 730 . . 3 ((((𝜑𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝑅 ∈ CMnd)
4 primrootscoprbij2.3 . . . 4 (𝜑𝐾 ∈ ℕ)
54ad3antrrr 730 . . 3 ((((𝜑𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝐾 ∈ ℕ)
6 primrootscoprbij2.4 . . . 4 (𝜑𝐼 ∈ ℕ)
76ad3antrrr 730 . . 3 ((((𝜑𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝐼 ∈ ℕ)
8 simpllr 775 . . 3 ((((𝜑𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝑥 ∈ ℕ)
9 simplr 768 . . 3 ((((𝜑𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝑦 ∈ ℤ)
10 primrootscoprbij2.5 . . . . 5 (𝜑 → (𝐼 gcd 𝐾) = 1)
1110ad3antrrr 730 . . . 4 ((((𝜑𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → (𝐼 gcd 𝐾) = 1)
12 simpr 484 . . . 4 ((((𝜑𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦)))
1311, 12eqtr3d 2768 . . 3 ((((𝜑𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 1 = ((𝐼 · 𝑥) + (𝐾 · 𝑦)))
14 eqid 2731 . . 3 {𝑤 ∈ (Base‘𝑅) ∣ ∃𝑧 ∈ (Base‘𝑅)(𝑧(+g𝑅)𝑤) = (0g𝑅)} = {𝑤 ∈ (Base‘𝑅) ∣ ∃𝑧 ∈ (Base‘𝑅)(𝑧(+g𝑅)𝑤) = (0g𝑅)}
151, 3, 5, 7, 8, 9, 13, 14primrootscoprbij 42135 . 2 ((((𝜑𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾))
166, 4jca 511 . . 3 (𝜑 → (𝐼 ∈ ℕ ∧ 𝐾 ∈ ℕ))
17 posbezout 42133 . . 3 ((𝐼 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦)))
1816, 17syl 17 . 2 (𝜑 → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦)))
1915, 18r19.29vva 3192 1 (𝜑𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  cmpt 5167  1-1-ontowf1o 6475  cfv 6476  (class class class)co 7341  1c1 11002   + caddc 11004   · cmul 11006  cn 12120  cz 12463   gcd cgcd 16400  Basecbs 17115  +gcplusg 17156  0gc0g 17338  .gcmg 18975  CMndccmn 19687   PrimRoots cprimroots 42124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-fz 13403  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-dvds 16159  df-gcd 16401  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-mulg 18976  df-cmn 19689  df-abl 19690  df-primroots 42125
This theorem is referenced by:  aks6d1c1p5  42145
  Copyright terms: Public domain W3C validator