![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > primrootscoprbij2 | Structured version Visualization version GIF version |
Description: A bijection between coprime powers of primitive roots and primitive roots. (Contributed by metakunt, 26-Apr-2025.) |
Ref | Expression |
---|---|
primrootscoprbij2.1 | ⊢ 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g‘𝑅)𝑚)) |
primrootscoprbij2.2 | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
primrootscoprbij2.3 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
primrootscoprbij2.4 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
primrootscoprbij2.5 | ⊢ (𝜑 → (𝐼 gcd 𝐾) = 1) |
Ref | Expression |
---|---|
primrootscoprbij2 | ⊢ (𝜑 → 𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | primrootscoprbij2.1 | . . 3 ⊢ 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g‘𝑅)𝑚)) | |
2 | primrootscoprbij2.2 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
3 | 2 | ad3antrrr 730 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝑅 ∈ CMnd) |
4 | primrootscoprbij2.3 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
5 | 4 | ad3antrrr 730 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝐾 ∈ ℕ) |
6 | primrootscoprbij2.4 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
7 | 6 | ad3antrrr 730 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝐼 ∈ ℕ) |
8 | simpllr 776 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝑥 ∈ ℕ) | |
9 | simplr 769 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝑦 ∈ ℤ) | |
10 | primrootscoprbij2.5 | . . . . 5 ⊢ (𝜑 → (𝐼 gcd 𝐾) = 1) | |
11 | 10 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → (𝐼 gcd 𝐾) = 1) |
12 | simpr 484 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) | |
13 | 11, 12 | eqtr3d 2779 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 1 = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) |
14 | eqid 2737 | . . 3 ⊢ {𝑤 ∈ (Base‘𝑅) ∣ ∃𝑧 ∈ (Base‘𝑅)(𝑧(+g‘𝑅)𝑤) = (0g‘𝑅)} = {𝑤 ∈ (Base‘𝑅) ∣ ∃𝑧 ∈ (Base‘𝑅)(𝑧(+g‘𝑅)𝑤) = (0g‘𝑅)} | |
15 | 1, 3, 5, 7, 8, 9, 13, 14 | primrootscoprbij 42098 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾)) |
16 | 6, 4 | jca 511 | . . 3 ⊢ (𝜑 → (𝐼 ∈ ℕ ∧ 𝐾 ∈ ℕ)) |
17 | posbezout 42096 | . . 3 ⊢ ((𝐼 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) | |
18 | 16, 17 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) |
19 | 15, 18 | r19.29vva 3216 | 1 ⊢ (𝜑 → 𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3070 {crab 3436 ↦ cmpt 5234 –1-1-onto→wf1o 6568 ‘cfv 6569 (class class class)co 7438 1c1 11163 + caddc 11165 · cmul 11167 ℕcn 12273 ℤcz 12620 gcd cgcd 16537 Basecbs 17254 +gcplusg 17307 0gc0g 17495 .gcmg 19107 CMndccmn 19822 PrimRoots cprimroots 42087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-sup 9489 df-inf 9490 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-z 12621 df-uz 12886 df-rp 13042 df-fz 13554 df-fl 13838 df-mod 13916 df-seq 14049 df-exp 14109 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-dvds 16297 df-gcd 16538 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-submnd 18819 df-grp 18976 df-minusg 18977 df-mulg 19108 df-cmn 19824 df-abl 19825 df-primroots 42088 |
This theorem is referenced by: aks6d1c1p5 42108 |
Copyright terms: Public domain | W3C validator |