![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > primrootscoprbij2 | Structured version Visualization version GIF version |
Description: A bijection between coprime powers of primitive roots and primitive roots. (Contributed by metakunt, 26-Apr-2025.) |
Ref | Expression |
---|---|
primrootscoprbij2.1 | ⊢ 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g‘𝑅)𝑚)) |
primrootscoprbij2.2 | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
primrootscoprbij2.3 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
primrootscoprbij2.4 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
primrootscoprbij2.5 | ⊢ (𝜑 → (𝐼 gcd 𝐾) = 1) |
Ref | Expression |
---|---|
primrootscoprbij2 | ⊢ (𝜑 → 𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | primrootscoprbij2.1 | . . 3 ⊢ 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g‘𝑅)𝑚)) | |
2 | primrootscoprbij2.2 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
3 | 2 | ad3antrrr 728 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝑅 ∈ CMnd) |
4 | primrootscoprbij2.3 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
5 | 4 | ad3antrrr 728 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝐾 ∈ ℕ) |
6 | primrootscoprbij2.4 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
7 | 6 | ad3antrrr 728 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝐼 ∈ ℕ) |
8 | simpllr 774 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝑥 ∈ ℕ) | |
9 | simplr 767 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝑦 ∈ ℤ) | |
10 | primrootscoprbij2.5 | . . . . 5 ⊢ (𝜑 → (𝐼 gcd 𝐾) = 1) | |
11 | 10 | ad3antrrr 728 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → (𝐼 gcd 𝐾) = 1) |
12 | simpr 483 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) | |
13 | 11, 12 | eqtr3d 2770 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 1 = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) |
14 | eqid 2728 | . . 3 ⊢ {𝑤 ∈ (Base‘𝑅) ∣ ∃𝑧 ∈ (Base‘𝑅)(𝑧(+g‘𝑅)𝑤) = (0g‘𝑅)} = {𝑤 ∈ (Base‘𝑅) ∣ ∃𝑧 ∈ (Base‘𝑅)(𝑧(+g‘𝑅)𝑤) = (0g‘𝑅)} | |
15 | 1, 3, 5, 7, 8, 9, 13, 14 | primrootscoprbij 41605 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾)) |
16 | 6, 4 | jca 510 | . . 3 ⊢ (𝜑 → (𝐼 ∈ ℕ ∧ 𝐾 ∈ ℕ)) |
17 | posbezout 41603 | . . 3 ⊢ ((𝐼 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) | |
18 | 16, 17 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) |
19 | 15, 18 | r19.29vva 3211 | 1 ⊢ (𝜑 → 𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3067 {crab 3430 ↦ cmpt 5235 –1-1-onto→wf1o 6552 ‘cfv 6553 (class class class)co 7426 1c1 11147 + caddc 11149 · cmul 11151 ℕcn 12250 ℤcz 12596 gcd cgcd 16476 Basecbs 17187 +gcplusg 17240 0gc0g 17428 .gcmg 19030 CMndccmn 19742 PrimRoots cprimroots 41594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-sup 9473 df-inf 9474 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-fz 13525 df-fl 13797 df-mod 13875 df-seq 14007 df-exp 14067 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-dvds 16239 df-gcd 16477 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-submnd 18748 df-grp 18900 df-minusg 18901 df-mulg 19031 df-cmn 19744 df-abl 19745 df-primroots 41595 |
This theorem is referenced by: aks6d1c1p5 41615 |
Copyright terms: Public domain | W3C validator |