| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > primrootscoprbij2 | Structured version Visualization version GIF version | ||
| Description: A bijection between coprime powers of primitive roots and primitive roots. (Contributed by metakunt, 26-Apr-2025.) |
| Ref | Expression |
|---|---|
| primrootscoprbij2.1 | ⊢ 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g‘𝑅)𝑚)) |
| primrootscoprbij2.2 | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| primrootscoprbij2.3 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| primrootscoprbij2.4 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
| primrootscoprbij2.5 | ⊢ (𝜑 → (𝐼 gcd 𝐾) = 1) |
| Ref | Expression |
|---|---|
| primrootscoprbij2 | ⊢ (𝜑 → 𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | primrootscoprbij2.1 | . . 3 ⊢ 𝐹 = (𝑚 ∈ (𝑅 PrimRoots 𝐾) ↦ (𝐼(.g‘𝑅)𝑚)) | |
| 2 | primrootscoprbij2.2 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
| 3 | 2 | ad3antrrr 730 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝑅 ∈ CMnd) |
| 4 | primrootscoprbij2.3 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 5 | 4 | ad3antrrr 730 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝐾 ∈ ℕ) |
| 6 | primrootscoprbij2.4 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
| 7 | 6 | ad3antrrr 730 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝐼 ∈ ℕ) |
| 8 | simpllr 775 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝑥 ∈ ℕ) | |
| 9 | simplr 768 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝑦 ∈ ℤ) | |
| 10 | primrootscoprbij2.5 | . . . . 5 ⊢ (𝜑 → (𝐼 gcd 𝐾) = 1) | |
| 11 | 10 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → (𝐼 gcd 𝐾) = 1) |
| 12 | simpr 484 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) | |
| 13 | 11, 12 | eqtr3d 2768 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 1 = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) |
| 14 | eqid 2731 | . . 3 ⊢ {𝑤 ∈ (Base‘𝑅) ∣ ∃𝑧 ∈ (Base‘𝑅)(𝑧(+g‘𝑅)𝑤) = (0g‘𝑅)} = {𝑤 ∈ (Base‘𝑅) ∣ ∃𝑧 ∈ (Base‘𝑅)(𝑧(+g‘𝑅)𝑤) = (0g‘𝑅)} | |
| 15 | 1, 3, 5, 7, 8, 9, 13, 14 | primrootscoprbij 42135 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ ℤ) ∧ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) → 𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾)) |
| 16 | 6, 4 | jca 511 | . . 3 ⊢ (𝜑 → (𝐼 ∈ ℕ ∧ 𝐾 ∈ ℕ)) |
| 17 | posbezout 42133 | . . 3 ⊢ ((𝐼 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) | |
| 18 | 16, 17 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ (𝐼 gcd 𝐾) = ((𝐼 · 𝑥) + (𝐾 · 𝑦))) |
| 19 | 15, 18 | r19.29vva 3192 | 1 ⊢ (𝜑 → 𝐹:(𝑅 PrimRoots 𝐾)–1-1-onto→(𝑅 PrimRoots 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 ↦ cmpt 5167 –1-1-onto→wf1o 6475 ‘cfv 6476 (class class class)co 7341 1c1 11002 + caddc 11004 · cmul 11006 ℕcn 12120 ℤcz 12463 gcd cgcd 16400 Basecbs 17115 +gcplusg 17156 0gc0g 17338 .gcmg 18975 CMndccmn 19687 PrimRoots cprimroots 42124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-dvds 16159 df-gcd 16401 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-mulg 18976 df-cmn 19689 df-abl 19690 df-primroots 42125 |
| This theorem is referenced by: aks6d1c1p5 42145 |
| Copyright terms: Public domain | W3C validator |