Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanhbnd Structured version   Visualization version   GIF version

Theorem tanhbnd 15503
 Description: The hyperbolic tangent of a real number is bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
tanhbnd (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ (-1(,)1))

Proof of Theorem tanhbnd
StepHypRef Expression
1 retanhcl 15501 . 2 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ ℝ)
2 ax-icn 10581 . . . . . . . 8 i ∈ ℂ
3 recn 10612 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 mulcl 10606 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
52, 3, 4sylancr 590 . . . . . . 7 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
6 rpcoshcl 15499 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+)
76rpne0d 12422 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ≠ 0)
85, 7tancld 15474 . . . . . 6 (𝐴 ∈ ℝ → (tan‘(i · 𝐴)) ∈ ℂ)
92a1i 11 . . . . . 6 (𝐴 ∈ ℝ → i ∈ ℂ)
10 ine0 11060 . . . . . . 7 i ≠ 0
1110a1i 11 . . . . . 6 (𝐴 ∈ ℝ → i ≠ 0)
128, 9, 11divnegd 11414 . . . . 5 (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) = (-(tan‘(i · 𝐴)) / i))
13 mulneg2 11062 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
142, 3, 13sylancr 590 . . . . . . . 8 (𝐴 ∈ ℝ → (i · -𝐴) = -(i · 𝐴))
1514fveq2d 6655 . . . . . . 7 (𝐴 ∈ ℝ → (tan‘(i · -𝐴)) = (tan‘-(i · 𝐴)))
16 tanneg 15490 . . . . . . . 8 (((i · 𝐴) ∈ ℂ ∧ (cos‘(i · 𝐴)) ≠ 0) → (tan‘-(i · 𝐴)) = -(tan‘(i · 𝐴)))
175, 7, 16syl2anc 587 . . . . . . 7 (𝐴 ∈ ℝ → (tan‘-(i · 𝐴)) = -(tan‘(i · 𝐴)))
1815, 17eqtrd 2859 . . . . . 6 (𝐴 ∈ ℝ → (tan‘(i · -𝐴)) = -(tan‘(i · 𝐴)))
1918oveq1d 7153 . . . . 5 (𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) = (-(tan‘(i · 𝐴)) / i))
2012, 19eqtr4d 2862 . . . 4 (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) = ((tan‘(i · -𝐴)) / i))
21 renegcl 10934 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
22 tanhlt1 15502 . . . . 5 (-𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) < 1)
2321, 22syl 17 . . . 4 (𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) < 1)
2420, 23eqbrtrd 5069 . . 3 (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) < 1)
25 1re 10626 . . . 4 1 ∈ ℝ
26 ltnegcon1 11126 . . . 4 ((((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ 1 ∈ ℝ) → (-((tan‘(i · 𝐴)) / i) < 1 ↔ -1 < ((tan‘(i · 𝐴)) / i)))
271, 25, 26sylancl 589 . . 3 (𝐴 ∈ ℝ → (-((tan‘(i · 𝐴)) / i) < 1 ↔ -1 < ((tan‘(i · 𝐴)) / i)))
2824, 27mpbid 235 . 2 (𝐴 ∈ ℝ → -1 < ((tan‘(i · 𝐴)) / i))
29 tanhlt1 15502 . 2 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1)
30 neg1rr 11738 . . . 4 -1 ∈ ℝ
3130rexri 10684 . . 3 -1 ∈ ℝ*
3225rexri 10684 . . 3 1 ∈ ℝ*
33 elioo2 12765 . . 3 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*) → (((tan‘(i · 𝐴)) / i) ∈ (-1(,)1) ↔ (((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ -1 < ((tan‘(i · 𝐴)) / i) ∧ ((tan‘(i · 𝐴)) / i) < 1)))
3431, 32, 33mp2an 691 . 2 (((tan‘(i · 𝐴)) / i) ∈ (-1(,)1) ↔ (((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ -1 < ((tan‘(i · 𝐴)) / i) ∧ ((tan‘(i · 𝐴)) / i) < 1))
351, 28, 29, 34syl3anbrc 1340 1 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ (-1(,)1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3013   class class class wbr 5047  ‘cfv 6336  (class class class)co 7138  ℂcc 10520  ℝcr 10521  0cc0 10522  1c1 10523  ici 10524   · cmul 10527  ℝ*cxr 10659   < clt 10660  -cneg 10856   / cdiv 11282  (,)cioo 12724  cosccos 15407  tanctan 15408 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-inf2 9088  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600  ax-addf 10601  ax-mulf 10602 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-n0 11884  df-z 11968  df-uz 12230  df-rp 12376  df-ioo 12728  df-ico 12730  df-fz 12884  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14415  df-cj 14447  df-re 14448  df-im 14449  df-sqrt 14583  df-abs 14584  df-limsup 14817  df-clim 14834  df-rlim 14835  df-sum 15032  df-ef 15410  df-sin 15412  df-cos 15413  df-tan 15414 This theorem is referenced by:  tanregt0  25120  atantan  25498
 Copyright terms: Public domain W3C validator