MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanhbnd Structured version   Visualization version   GIF version

Theorem tanhbnd 16136
Description: The hyperbolic tangent of a real number is bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
tanhbnd (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ (-1(,)1))

Proof of Theorem tanhbnd
StepHypRef Expression
1 retanhcl 16134 . 2 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ ℝ)
2 ax-icn 11134 . . . . . . . 8 i ∈ ℂ
3 recn 11165 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 mulcl 11159 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
52, 3, 4sylancr 587 . . . . . . 7 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
6 rpcoshcl 16132 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+)
76rpne0d 13007 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ≠ 0)
85, 7tancld 16107 . . . . . 6 (𝐴 ∈ ℝ → (tan‘(i · 𝐴)) ∈ ℂ)
92a1i 11 . . . . . 6 (𝐴 ∈ ℝ → i ∈ ℂ)
10 ine0 11620 . . . . . . 7 i ≠ 0
1110a1i 11 . . . . . 6 (𝐴 ∈ ℝ → i ≠ 0)
128, 9, 11divnegd 11978 . . . . 5 (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) = (-(tan‘(i · 𝐴)) / i))
13 mulneg2 11622 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
142, 3, 13sylancr 587 . . . . . . . 8 (𝐴 ∈ ℝ → (i · -𝐴) = -(i · 𝐴))
1514fveq2d 6865 . . . . . . 7 (𝐴 ∈ ℝ → (tan‘(i · -𝐴)) = (tan‘-(i · 𝐴)))
16 tanneg 16123 . . . . . . . 8 (((i · 𝐴) ∈ ℂ ∧ (cos‘(i · 𝐴)) ≠ 0) → (tan‘-(i · 𝐴)) = -(tan‘(i · 𝐴)))
175, 7, 16syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ → (tan‘-(i · 𝐴)) = -(tan‘(i · 𝐴)))
1815, 17eqtrd 2765 . . . . . 6 (𝐴 ∈ ℝ → (tan‘(i · -𝐴)) = -(tan‘(i · 𝐴)))
1918oveq1d 7405 . . . . 5 (𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) = (-(tan‘(i · 𝐴)) / i))
2012, 19eqtr4d 2768 . . . 4 (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) = ((tan‘(i · -𝐴)) / i))
21 renegcl 11492 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
22 tanhlt1 16135 . . . . 5 (-𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) < 1)
2321, 22syl 17 . . . 4 (𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) < 1)
2420, 23eqbrtrd 5132 . . 3 (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) < 1)
25 1re 11181 . . . 4 1 ∈ ℝ
26 ltnegcon1 11686 . . . 4 ((((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ 1 ∈ ℝ) → (-((tan‘(i · 𝐴)) / i) < 1 ↔ -1 < ((tan‘(i · 𝐴)) / i)))
271, 25, 26sylancl 586 . . 3 (𝐴 ∈ ℝ → (-((tan‘(i · 𝐴)) / i) < 1 ↔ -1 < ((tan‘(i · 𝐴)) / i)))
2824, 27mpbid 232 . 2 (𝐴 ∈ ℝ → -1 < ((tan‘(i · 𝐴)) / i))
29 tanhlt1 16135 . 2 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1)
30 neg1rr 12179 . . . 4 -1 ∈ ℝ
3130rexri 11239 . . 3 -1 ∈ ℝ*
3225rexri 11239 . . 3 1 ∈ ℝ*
33 elioo2 13354 . . 3 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*) → (((tan‘(i · 𝐴)) / i) ∈ (-1(,)1) ↔ (((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ -1 < ((tan‘(i · 𝐴)) / i) ∧ ((tan‘(i · 𝐴)) / i) < 1)))
3431, 32, 33mp2an 692 . 2 (((tan‘(i · 𝐴)) / i) ∈ (-1(,)1) ↔ (((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ -1 < ((tan‘(i · 𝐴)) / i) ∧ ((tan‘(i · 𝐴)) / i) < 1))
351, 28, 29, 34syl3anbrc 1344 1 (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ (-1(,)1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076  ici 11077   · cmul 11080  *cxr 11214   < clt 11215  -cneg 11413   / cdiv 11842  (,)cioo 13313  cosccos 16037  tanctan 16038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ioo 13317  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-tan 16044
This theorem is referenced by:  tanregt0  26455  atantan  26840
  Copyright terms: Public domain W3C validator