| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tanhbnd | Structured version Visualization version GIF version | ||
| Description: The hyperbolic tangent of a real number is bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| Ref | Expression |
|---|---|
| tanhbnd | ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ (-1(,)1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retanhcl 16177 | . 2 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ ℝ) | |
| 2 | ax-icn 11188 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 3 | recn 11219 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 4 | mulcl 11213 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 5 | 2, 3, 4 | sylancr 587 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
| 6 | rpcoshcl 16175 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+) | |
| 7 | 6 | rpne0d 13056 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ≠ 0) |
| 8 | 5, 7 | tancld 16150 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (tan‘(i · 𝐴)) ∈ ℂ) |
| 9 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → i ∈ ℂ) |
| 10 | ine0 11672 | . . . . . . 7 ⊢ i ≠ 0 | |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → i ≠ 0) |
| 12 | 8, 9, 11 | divnegd 12030 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) = (-(tan‘(i · 𝐴)) / i)) |
| 13 | mulneg2 11674 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴)) | |
| 14 | 2, 3, 13 | sylancr 587 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (i · -𝐴) = -(i · 𝐴)) |
| 15 | 14 | fveq2d 6880 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (tan‘(i · -𝐴)) = (tan‘-(i · 𝐴))) |
| 16 | tanneg 16166 | . . . . . . . 8 ⊢ (((i · 𝐴) ∈ ℂ ∧ (cos‘(i · 𝐴)) ≠ 0) → (tan‘-(i · 𝐴)) = -(tan‘(i · 𝐴))) | |
| 17 | 5, 7, 16 | syl2anc 584 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (tan‘-(i · 𝐴)) = -(tan‘(i · 𝐴))) |
| 18 | 15, 17 | eqtrd 2770 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (tan‘(i · -𝐴)) = -(tan‘(i · 𝐴))) |
| 19 | 18 | oveq1d 7420 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) = (-(tan‘(i · 𝐴)) / i)) |
| 20 | 12, 19 | eqtr4d 2773 | . . . 4 ⊢ (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) = ((tan‘(i · -𝐴)) / i)) |
| 21 | renegcl 11546 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 22 | tanhlt1 16178 | . . . . 5 ⊢ (-𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) < 1) | |
| 23 | 21, 22 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) < 1) |
| 24 | 20, 23 | eqbrtrd 5141 | . . 3 ⊢ (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) < 1) |
| 25 | 1re 11235 | . . . 4 ⊢ 1 ∈ ℝ | |
| 26 | ltnegcon1 11738 | . . . 4 ⊢ ((((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ 1 ∈ ℝ) → (-((tan‘(i · 𝐴)) / i) < 1 ↔ -1 < ((tan‘(i · 𝐴)) / i))) | |
| 27 | 1, 25, 26 | sylancl 586 | . . 3 ⊢ (𝐴 ∈ ℝ → (-((tan‘(i · 𝐴)) / i) < 1 ↔ -1 < ((tan‘(i · 𝐴)) / i))) |
| 28 | 24, 27 | mpbid 232 | . 2 ⊢ (𝐴 ∈ ℝ → -1 < ((tan‘(i · 𝐴)) / i)) |
| 29 | tanhlt1 16178 | . 2 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1) | |
| 30 | neg1rr 12355 | . . . 4 ⊢ -1 ∈ ℝ | |
| 31 | 30 | rexri 11293 | . . 3 ⊢ -1 ∈ ℝ* |
| 32 | 25 | rexri 11293 | . . 3 ⊢ 1 ∈ ℝ* |
| 33 | elioo2 13403 | . . 3 ⊢ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*) → (((tan‘(i · 𝐴)) / i) ∈ (-1(,)1) ↔ (((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ -1 < ((tan‘(i · 𝐴)) / i) ∧ ((tan‘(i · 𝐴)) / i) < 1))) | |
| 34 | 31, 32, 33 | mp2an 692 | . 2 ⊢ (((tan‘(i · 𝐴)) / i) ∈ (-1(,)1) ↔ (((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ -1 < ((tan‘(i · 𝐴)) / i) ∧ ((tan‘(i · 𝐴)) / i) < 1)) |
| 35 | 1, 28, 29, 34 | syl3anbrc 1344 | 1 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ (-1(,)1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝcr 11128 0cc0 11129 1c1 11130 ici 11131 · cmul 11134 ℝ*cxr 11268 < clt 11269 -cneg 11467 / cdiv 11894 (,)cioo 13362 cosccos 16080 tanctan 16081 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-ioo 13366 df-ico 13368 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-fac 14292 df-bc 14321 df-hash 14349 df-shft 15086 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 df-ef 16083 df-sin 16085 df-cos 16086 df-tan 16087 |
| This theorem is referenced by: tanregt0 26500 atantan 26885 |
| Copyright terms: Public domain | W3C validator |