| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tanhbnd | Structured version Visualization version GIF version | ||
| Description: The hyperbolic tangent of a real number is bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| Ref | Expression |
|---|---|
| tanhbnd | ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ (-1(,)1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retanhcl 16103 | . 2 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ ℝ) | |
| 2 | ax-icn 11103 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 3 | recn 11134 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 4 | mulcl 11128 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 5 | 2, 3, 4 | sylancr 587 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
| 6 | rpcoshcl 16101 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+) | |
| 7 | 6 | rpne0d 12976 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ≠ 0) |
| 8 | 5, 7 | tancld 16076 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (tan‘(i · 𝐴)) ∈ ℂ) |
| 9 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → i ∈ ℂ) |
| 10 | ine0 11589 | . . . . . . 7 ⊢ i ≠ 0 | |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → i ≠ 0) |
| 12 | 8, 9, 11 | divnegd 11947 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) = (-(tan‘(i · 𝐴)) / i)) |
| 13 | mulneg2 11591 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴)) | |
| 14 | 2, 3, 13 | sylancr 587 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (i · -𝐴) = -(i · 𝐴)) |
| 15 | 14 | fveq2d 6844 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (tan‘(i · -𝐴)) = (tan‘-(i · 𝐴))) |
| 16 | tanneg 16092 | . . . . . . . 8 ⊢ (((i · 𝐴) ∈ ℂ ∧ (cos‘(i · 𝐴)) ≠ 0) → (tan‘-(i · 𝐴)) = -(tan‘(i · 𝐴))) | |
| 17 | 5, 7, 16 | syl2anc 584 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (tan‘-(i · 𝐴)) = -(tan‘(i · 𝐴))) |
| 18 | 15, 17 | eqtrd 2764 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (tan‘(i · -𝐴)) = -(tan‘(i · 𝐴))) |
| 19 | 18 | oveq1d 7384 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) = (-(tan‘(i · 𝐴)) / i)) |
| 20 | 12, 19 | eqtr4d 2767 | . . . 4 ⊢ (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) = ((tan‘(i · -𝐴)) / i)) |
| 21 | renegcl 11461 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 22 | tanhlt1 16104 | . . . . 5 ⊢ (-𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) < 1) | |
| 23 | 21, 22 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · -𝐴)) / i) < 1) |
| 24 | 20, 23 | eqbrtrd 5124 | . . 3 ⊢ (𝐴 ∈ ℝ → -((tan‘(i · 𝐴)) / i) < 1) |
| 25 | 1re 11150 | . . . 4 ⊢ 1 ∈ ℝ | |
| 26 | ltnegcon1 11655 | . . . 4 ⊢ ((((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ 1 ∈ ℝ) → (-((tan‘(i · 𝐴)) / i) < 1 ↔ -1 < ((tan‘(i · 𝐴)) / i))) | |
| 27 | 1, 25, 26 | sylancl 586 | . . 3 ⊢ (𝐴 ∈ ℝ → (-((tan‘(i · 𝐴)) / i) < 1 ↔ -1 < ((tan‘(i · 𝐴)) / i))) |
| 28 | 24, 27 | mpbid 232 | . 2 ⊢ (𝐴 ∈ ℝ → -1 < ((tan‘(i · 𝐴)) / i)) |
| 29 | tanhlt1 16104 | . 2 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1) | |
| 30 | neg1rr 12148 | . . . 4 ⊢ -1 ∈ ℝ | |
| 31 | 30 | rexri 11208 | . . 3 ⊢ -1 ∈ ℝ* |
| 32 | 25 | rexri 11208 | . . 3 ⊢ 1 ∈ ℝ* |
| 33 | elioo2 13323 | . . 3 ⊢ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*) → (((tan‘(i · 𝐴)) / i) ∈ (-1(,)1) ↔ (((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ -1 < ((tan‘(i · 𝐴)) / i) ∧ ((tan‘(i · 𝐴)) / i) < 1))) | |
| 34 | 31, 32, 33 | mp2an 692 | . 2 ⊢ (((tan‘(i · 𝐴)) / i) ∈ (-1(,)1) ↔ (((tan‘(i · 𝐴)) / i) ∈ ℝ ∧ -1 < ((tan‘(i · 𝐴)) / i) ∧ ((tan‘(i · 𝐴)) / i) < 1)) |
| 35 | 1, 28, 29, 34 | syl3anbrc 1344 | 1 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ (-1(,)1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 ici 11046 · cmul 11049 ℝ*cxr 11183 < clt 11184 -cneg 11382 / cdiv 11811 (,)cioo 13282 cosccos 16006 tanctan 16007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-ioo 13286 df-ico 13288 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-shft 15009 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-ef 16009 df-sin 16011 df-cos 16012 df-tan 16013 |
| This theorem is referenced by: tanregt0 26424 atantan 26809 |
| Copyright terms: Public domain | W3C validator |