MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcco Structured version   Visualization version   GIF version

Theorem rngcco 20644
Description: Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.)
Hypotheses
Ref Expression
rngcco.c 𝐶 = (RngCat‘𝑈)
rngcco.u (𝜑𝑈𝑉)
rngcco.o · = (comp‘𝐶)
rngcco.x (𝜑𝑋𝑈)
rngcco.y (𝜑𝑌𝑈)
rngcco.z (𝜑𝑍𝑈)
rngcco.f (𝜑𝐹:(Base‘𝑋)⟶(Base‘𝑌))
rngcco.g (𝜑𝐺:(Base‘𝑌)⟶(Base‘𝑍))
Assertion
Ref Expression
rngcco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))

Proof of Theorem rngcco
StepHypRef Expression
1 rngcco.c . . . . 5 𝐶 = (RngCat‘𝑈)
2 rngcco.u . . . . 5 (𝜑𝑈𝑉)
3 rngcco.o . . . . 5 · = (comp‘𝐶)
41, 2, 3rngccofval 20643 . . . 4 (𝜑· = (comp‘(ExtStrCat‘𝑈)))
54oveqd 7448 . . 3 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (⟨𝑋, 𝑌⟩(comp‘(ExtStrCat‘𝑈))𝑍))
65oveqd 7448 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌⟩(comp‘(ExtStrCat‘𝑈))𝑍)𝐹))
7 eqid 2735 . . 3 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
8 eqid 2735 . . 3 (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈))
9 rngcco.x . . 3 (𝜑𝑋𝑈)
10 rngcco.y . . 3 (𝜑𝑌𝑈)
11 rngcco.z . . 3 (𝜑𝑍𝑈)
12 eqid 2735 . . 3 (Base‘𝑋) = (Base‘𝑋)
13 eqid 2735 . . 3 (Base‘𝑌) = (Base‘𝑌)
14 eqid 2735 . . 3 (Base‘𝑍) = (Base‘𝑍)
15 rngcco.f . . 3 (𝜑𝐹:(Base‘𝑋)⟶(Base‘𝑌))
16 rngcco.g . . 3 (𝜑𝐺:(Base‘𝑌)⟶(Base‘𝑍))
177, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16estrcco 18185 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘(ExtStrCat‘𝑈))𝑍)𝐹) = (𝐺𝐹))
186, 17eqtrd 2775 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cop 4637  ccom 5693  wf 6559  cfv 6563  (class class class)co 7431  Basecbs 17245  compcco 17310  ExtStrCatcestrc 18177  RngCatcrngc 20633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-hom 17322  df-cco 17323  df-resc 17859  df-estrc 18178  df-rnghm 20453  df-rngc 20634
This theorem is referenced by:  rngcsect  20653  rhmsubcrngclem2  20684  rhmsubclem4  20705
  Copyright terms: Public domain W3C validator