MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcco Structured version   Visualization version   GIF version

Theorem rngcco 20628
Description: Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.)
Hypotheses
Ref Expression
rngcco.c 𝐶 = (RngCat‘𝑈)
rngcco.u (𝜑𝑈𝑉)
rngcco.o · = (comp‘𝐶)
rngcco.x (𝜑𝑋𝑈)
rngcco.y (𝜑𝑌𝑈)
rngcco.z (𝜑𝑍𝑈)
rngcco.f (𝜑𝐹:(Base‘𝑋)⟶(Base‘𝑌))
rngcco.g (𝜑𝐺:(Base‘𝑌)⟶(Base‘𝑍))
Assertion
Ref Expression
rngcco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))

Proof of Theorem rngcco
StepHypRef Expression
1 rngcco.c . . . . 5 𝐶 = (RngCat‘𝑈)
2 rngcco.u . . . . 5 (𝜑𝑈𝑉)
3 rngcco.o . . . . 5 · = (comp‘𝐶)
41, 2, 3rngccofval 20627 . . . 4 (𝜑· = (comp‘(ExtStrCat‘𝑈)))
54oveqd 7449 . . 3 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (⟨𝑋, 𝑌⟩(comp‘(ExtStrCat‘𝑈))𝑍))
65oveqd 7449 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌⟩(comp‘(ExtStrCat‘𝑈))𝑍)𝐹))
7 eqid 2736 . . 3 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
8 eqid 2736 . . 3 (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈))
9 rngcco.x . . 3 (𝜑𝑋𝑈)
10 rngcco.y . . 3 (𝜑𝑌𝑈)
11 rngcco.z . . 3 (𝜑𝑍𝑈)
12 eqid 2736 . . 3 (Base‘𝑋) = (Base‘𝑋)
13 eqid 2736 . . 3 (Base‘𝑌) = (Base‘𝑌)
14 eqid 2736 . . 3 (Base‘𝑍) = (Base‘𝑍)
15 rngcco.f . . 3 (𝜑𝐹:(Base‘𝑋)⟶(Base‘𝑌))
16 rngcco.g . . 3 (𝜑𝐺:(Base‘𝑌)⟶(Base‘𝑍))
177, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16estrcco 18175 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘(ExtStrCat‘𝑈))𝑍)𝐹) = (𝐺𝐹))
186, 17eqtrd 2776 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cop 4631  ccom 5688  wf 6556  cfv 6560  (class class class)co 7432  Basecbs 17248  compcco 17310  ExtStrCatcestrc 18167  RngCatcrngc 20617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-hom 17322  df-cco 17323  df-resc 17856  df-estrc 18168  df-rnghm 20437  df-rngc 20618
This theorem is referenced by:  rngcsect  20637  rhmsubcrngclem2  20668  rhmsubclem4  20689
  Copyright terms: Public domain W3C validator