MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcco Structured version   Visualization version   GIF version

Theorem rngcco 20536
Description: Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.)
Hypotheses
Ref Expression
rngcco.c 𝐶 = (RngCat‘𝑈)
rngcco.u (𝜑𝑈𝑉)
rngcco.o · = (comp‘𝐶)
rngcco.x (𝜑𝑋𝑈)
rngcco.y (𝜑𝑌𝑈)
rngcco.z (𝜑𝑍𝑈)
rngcco.f (𝜑𝐹:(Base‘𝑋)⟶(Base‘𝑌))
rngcco.g (𝜑𝐺:(Base‘𝑌)⟶(Base‘𝑍))
Assertion
Ref Expression
rngcco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))

Proof of Theorem rngcco
StepHypRef Expression
1 rngcco.c . . . . 5 𝐶 = (RngCat‘𝑈)
2 rngcco.u . . . . 5 (𝜑𝑈𝑉)
3 rngcco.o . . . . 5 · = (comp‘𝐶)
41, 2, 3rngccofval 20535 . . . 4 (𝜑· = (comp‘(ExtStrCat‘𝑈)))
54oveqd 7404 . . 3 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (⟨𝑋, 𝑌⟩(comp‘(ExtStrCat‘𝑈))𝑍))
65oveqd 7404 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌⟩(comp‘(ExtStrCat‘𝑈))𝑍)𝐹))
7 eqid 2729 . . 3 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
8 eqid 2729 . . 3 (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈))
9 rngcco.x . . 3 (𝜑𝑋𝑈)
10 rngcco.y . . 3 (𝜑𝑌𝑈)
11 rngcco.z . . 3 (𝜑𝑍𝑈)
12 eqid 2729 . . 3 (Base‘𝑋) = (Base‘𝑋)
13 eqid 2729 . . 3 (Base‘𝑌) = (Base‘𝑌)
14 eqid 2729 . . 3 (Base‘𝑍) = (Base‘𝑍)
15 rngcco.f . . 3 (𝜑𝐹:(Base‘𝑋)⟶(Base‘𝑌))
16 rngcco.g . . 3 (𝜑𝐺:(Base‘𝑌)⟶(Base‘𝑍))
177, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16estrcco 18091 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘(ExtStrCat‘𝑈))𝑍)𝐹) = (𝐺𝐹))
186, 17eqtrd 2764 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4595  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  compcco 17232  ExtStrCatcestrc 18083  RngCatcrngc 20525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-hom 17244  df-cco 17245  df-resc 17773  df-estrc 18084  df-rnghm 20345  df-rngc 20526
This theorem is referenced by:  rngcsect  20545  rhmsubcrngclem2  20576  rhmsubclem4  20597
  Copyright terms: Public domain W3C validator