Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcco | Structured version Visualization version GIF version |
Description: Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
Ref | Expression |
---|---|
rngcco.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rngcco.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcco.o | ⊢ · = (comp‘𝐶) |
rngcco.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
rngcco.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
rngcco.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
rngcco.f | ⊢ (𝜑 → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)) |
rngcco.g | ⊢ (𝜑 → 𝐺:(Base‘𝑌)⟶(Base‘𝑍)) |
Ref | Expression |
---|---|
rngcco | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcco.c | . . . . 5 ⊢ 𝐶 = (RngCat‘𝑈) | |
2 | rngcco.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | rngcco.o | . . . . 5 ⊢ · = (comp‘𝐶) | |
4 | 1, 2, 3 | rngccofval 45416 | . . . 4 ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
5 | 4 | oveqd 7272 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (〈𝑋, 𝑌〉(comp‘(ExtStrCat‘𝑈))𝑍)) |
6 | 5 | oveqd 7272 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉(comp‘(ExtStrCat‘𝑈))𝑍)𝐹)) |
7 | eqid 2738 | . . 3 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
8 | eqid 2738 | . . 3 ⊢ (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈)) | |
9 | rngcco.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
10 | rngcco.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
11 | rngcco.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
12 | eqid 2738 | . . 3 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
13 | eqid 2738 | . . 3 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
14 | eqid 2738 | . . 3 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
15 | rngcco.f | . . 3 ⊢ (𝜑 → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)) | |
16 | rngcco.g | . . 3 ⊢ (𝜑 → 𝐺:(Base‘𝑌)⟶(Base‘𝑍)) | |
17 | 7, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16 | estrcco 17762 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(comp‘(ExtStrCat‘𝑈))𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
18 | 6, 17 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 〈cop 4564 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 compcco 16900 ExtStrCatcestrc 17754 RngCatcrngc 45403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-hom 16912 df-cco 16913 df-resc 17440 df-estrc 17755 df-rnghomo 45333 df-rngc 45405 |
This theorem is referenced by: rngcsect 45426 rhmsubcrngclem2 45474 rhmsubclem4 45535 |
Copyright terms: Public domain | W3C validator |