MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s7rn Structured version   Visualization version   GIF version

Theorem s7rn 14874
Description: Range of a length 7 string. (Contributed by AV, 30-Jul-2025.)
Hypotheses
Ref Expression
s7rn.a (𝜑𝐴𝑉)
s7rn.b (𝜑𝐵𝑉)
s7rn.c (𝜑𝐶𝑉)
s7rn.d (𝜑𝐷𝑉)
s7rn.e (𝜑𝐸𝑉)
s7rn.f (𝜑𝐹𝑉)
s7rn.g (𝜑𝐺𝑉)
Assertion
Ref Expression
s7rn (𝜑 → ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))

Proof of Theorem s7rn
StepHypRef Expression
1 s4s3 14840 . . . 4 ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸𝐹𝐺”⟩)
21a1i 11 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸𝐹𝐺”⟩))
32rneqd 5882 . 2 (𝜑 → ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = ran (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸𝐹𝐺”⟩))
4 s4cli 14791 . . . 4 ⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word V
5 s3cli 14790 . . . 4 ⟨“𝐸𝐹𝐺”⟩ ∈ Word V
64, 5pm3.2i 470 . . 3 (⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word V ∧ ⟨“𝐸𝐹𝐺”⟩ ∈ Word V)
7 ccatrn 14499 . . 3 ((⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word V ∧ ⟨“𝐸𝐹𝐺”⟩ ∈ Word V) → ran (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸𝐹𝐺”⟩) = (ran ⟨“𝐴𝐵𝐶𝐷”⟩ ∪ ran ⟨“𝐸𝐹𝐺”⟩))
86, 7mp1i 13 . 2 (𝜑 → ran (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸𝐹𝐺”⟩) = (ran ⟨“𝐴𝐵𝐶𝐷”⟩ ∪ ran ⟨“𝐸𝐹𝐺”⟩))
9 df-s4 14759 . . . . . 6 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
109a1i 11 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩))
1110rneqd 5882 . . . 4 (𝜑 → ran ⟨“𝐴𝐵𝐶𝐷”⟩ = ran (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩))
12 s3cli 14790 . . . . . 6 ⟨“𝐴𝐵𝐶”⟩ ∈ Word V
13 s1cli 14515 . . . . . 6 ⟨“𝐷”⟩ ∈ Word V
1412, 13pm3.2i 470 . . . . 5 (⟨“𝐴𝐵𝐶”⟩ ∈ Word V ∧ ⟨“𝐷”⟩ ∈ Word V)
15 ccatrn 14499 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word V ∧ ⟨“𝐷”⟩ ∈ Word V) → ran (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (ran ⟨“𝐴𝐵𝐶”⟩ ∪ ran ⟨“𝐷”⟩))
1614, 15mp1i 13 . . . 4 (𝜑 → ran (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (ran ⟨“𝐴𝐵𝐶”⟩ ∪ ran ⟨“𝐷”⟩))
17 s7rn.a . . . . . 6 (𝜑𝐴𝑉)
18 s7rn.b . . . . . 6 (𝜑𝐵𝑉)
19 s7rn.c . . . . . 6 (𝜑𝐶𝑉)
2017, 18, 19s3rn 14873 . . . . 5 (𝜑 → ran ⟨“𝐴𝐵𝐶”⟩ = {𝐴, 𝐵, 𝐶})
21 s7rn.d . . . . . 6 (𝜑𝐷𝑉)
22 s1rn 14509 . . . . . 6 (𝐷𝑉 → ran ⟨“𝐷”⟩ = {𝐷})
2321, 22syl 17 . . . . 5 (𝜑 → ran ⟨“𝐷”⟩ = {𝐷})
2420, 23uneq12d 4118 . . . 4 (𝜑 → (ran ⟨“𝐴𝐵𝐶”⟩ ∪ ran ⟨“𝐷”⟩) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷}))
2511, 16, 243eqtrd 2772 . . 3 (𝜑 → ran ⟨“𝐴𝐵𝐶𝐷”⟩ = ({𝐴, 𝐵, 𝐶} ∪ {𝐷}))
26 s7rn.e . . . 4 (𝜑𝐸𝑉)
27 s7rn.f . . . 4 (𝜑𝐹𝑉)
28 s7rn.g . . . 4 (𝜑𝐺𝑉)
2926, 27, 28s3rn 14873 . . 3 (𝜑 → ran ⟨“𝐸𝐹𝐺”⟩ = {𝐸, 𝐹, 𝐺})
3025, 29uneq12d 4118 . 2 (𝜑 → (ran ⟨“𝐴𝐵𝐶𝐷”⟩ ∪ ran ⟨“𝐸𝐹𝐺”⟩) = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
313, 8, 303eqtrd 2772 1 (𝜑 → ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cun 3896  {csn 4575  {ctp 4579  ran crn 5620  (class class class)co 7352  Word cword 14422   ++ cconcat 14479  ⟨“cs1 14505  ⟨“cs3 14751  ⟨“cs4 14752  ⟨“cs7 14755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-concat 14480  df-s1 14506  df-s2 14757  df-s3 14758  df-s4 14759  df-s5 14760  df-s6 14761  df-s7 14762
This theorem is referenced by:  s7f1o  14875  usgrexmpl1edg  48148  usgrexmpl2edg  48153
  Copyright terms: Public domain W3C validator