![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s7rn | Structured version Visualization version GIF version |
Description: Range of a length 7 string. (Contributed by AV, 30-Jul-2025.) |
Ref | Expression |
---|---|
s7rn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
s7rn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
s7rn.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
s7rn.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
s7rn.e | ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
s7rn.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
s7rn.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
Ref | Expression |
---|---|
s7rn | ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s4s3 14976 | . . . 4 ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹𝐺”〉) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹𝐺”〉)) |
3 | 2 | rneqd 5956 | . 2 ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = ran (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹𝐺”〉)) |
4 | s4cli 14927 | . . . 4 ⊢ 〈“𝐴𝐵𝐶𝐷”〉 ∈ Word V | |
5 | s3cli 14926 | . . . 4 ⊢ 〈“𝐸𝐹𝐺”〉 ∈ Word V | |
6 | 4, 5 | pm3.2i 470 | . . 3 ⊢ (〈“𝐴𝐵𝐶𝐷”〉 ∈ Word V ∧ 〈“𝐸𝐹𝐺”〉 ∈ Word V) |
7 | ccatrn 14633 | . . 3 ⊢ ((〈“𝐴𝐵𝐶𝐷”〉 ∈ Word V ∧ 〈“𝐸𝐹𝐺”〉 ∈ Word V) → ran (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹𝐺”〉) = (ran 〈“𝐴𝐵𝐶𝐷”〉 ∪ ran 〈“𝐸𝐹𝐺”〉)) | |
8 | 6, 7 | mp1i 13 | . 2 ⊢ (𝜑 → ran (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹𝐺”〉) = (ran 〈“𝐴𝐵𝐶𝐷”〉 ∪ ran 〈“𝐸𝐹𝐺”〉)) |
9 | df-s4 14895 | . . . . . 6 ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) | |
10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉)) |
11 | 10 | rneqd 5956 | . . . 4 ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶𝐷”〉 = ran (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉)) |
12 | s3cli 14926 | . . . . . 6 ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V | |
13 | s1cli 14649 | . . . . . 6 ⊢ 〈“𝐷”〉 ∈ Word V | |
14 | 12, 13 | pm3.2i 470 | . . . . 5 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word V ∧ 〈“𝐷”〉 ∈ Word V) |
15 | ccatrn 14633 | . . . . 5 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ Word V ∧ 〈“𝐷”〉 ∈ Word V) → ran (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) = (ran 〈“𝐴𝐵𝐶”〉 ∪ ran 〈“𝐷”〉)) | |
16 | 14, 15 | mp1i 13 | . . . 4 ⊢ (𝜑 → ran (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) = (ran 〈“𝐴𝐵𝐶”〉 ∪ ran 〈“𝐷”〉)) |
17 | s7rn.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
18 | s7rn.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
19 | s7rn.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
20 | 17, 18, 19 | s3rn 15009 | . . . . 5 ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶”〉 = {𝐴, 𝐵, 𝐶}) |
21 | s7rn.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
22 | s1rn 14643 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → ran 〈“𝐷”〉 = {𝐷}) | |
23 | 21, 22 | syl 17 | . . . . 5 ⊢ (𝜑 → ran 〈“𝐷”〉 = {𝐷}) |
24 | 20, 23 | uneq12d 4182 | . . . 4 ⊢ (𝜑 → (ran 〈“𝐴𝐵𝐶”〉 ∪ ran 〈“𝐷”〉) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷})) |
25 | 11, 16, 24 | 3eqtrd 2781 | . . 3 ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶𝐷”〉 = ({𝐴, 𝐵, 𝐶} ∪ {𝐷})) |
26 | s7rn.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑉) | |
27 | s7rn.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
28 | s7rn.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
29 | 26, 27, 28 | s3rn 15009 | . . 3 ⊢ (𝜑 → ran 〈“𝐸𝐹𝐺”〉 = {𝐸, 𝐹, 𝐺}) |
30 | 25, 29 | uneq12d 4182 | . 2 ⊢ (𝜑 → (ran 〈“𝐴𝐵𝐶𝐷”〉 ∪ ran 〈“𝐸𝐹𝐺”〉) = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) |
31 | 3, 8, 30 | 3eqtrd 2781 | 1 ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ∪ cun 3964 {csn 4634 {ctp 4638 ran crn 5694 (class class class)co 7438 Word cword 14558 ++ cconcat 14614 〈“cs1 14639 〈“cs3 14887 〈“cs4 14888 〈“cs7 14891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-fzo 13701 df-hash 14376 df-word 14559 df-concat 14615 df-s1 14640 df-s2 14893 df-s3 14894 df-s4 14895 df-s5 14896 df-s6 14897 df-s7 14898 |
This theorem is referenced by: s7f1o 15011 usgrexmpl1edg 47949 usgrexmpl2edg 47954 |
Copyright terms: Public domain | W3C validator |