MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s7rn Structured version   Visualization version   GIF version

Theorem s7rn 14985
Description: Range of a length 7 string. (Contributed by AV, 30-Jul-2025.)
Hypotheses
Ref Expression
s7rn.a (𝜑𝐴𝑉)
s7rn.b (𝜑𝐵𝑉)
s7rn.c (𝜑𝐶𝑉)
s7rn.d (𝜑𝐷𝑉)
s7rn.e (𝜑𝐸𝑉)
s7rn.f (𝜑𝐹𝑉)
s7rn.g (𝜑𝐺𝑉)
Assertion
Ref Expression
s7rn (𝜑 → ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))

Proof of Theorem s7rn
StepHypRef Expression
1 s4s3 14951 . . . 4 ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸𝐹𝐺”⟩)
21a1i 11 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸𝐹𝐺”⟩))
32rneqd 5929 . 2 (𝜑 → ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = ran (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸𝐹𝐺”⟩))
4 s4cli 14902 . . . 4 ⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word V
5 s3cli 14901 . . . 4 ⟨“𝐸𝐹𝐺”⟩ ∈ Word V
64, 5pm3.2i 470 . . 3 (⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word V ∧ ⟨“𝐸𝐹𝐺”⟩ ∈ Word V)
7 ccatrn 14608 . . 3 ((⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word V ∧ ⟨“𝐸𝐹𝐺”⟩ ∈ Word V) → ran (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸𝐹𝐺”⟩) = (ran ⟨“𝐴𝐵𝐶𝐷”⟩ ∪ ran ⟨“𝐸𝐹𝐺”⟩))
86, 7mp1i 13 . 2 (𝜑 → ran (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸𝐹𝐺”⟩) = (ran ⟨“𝐴𝐵𝐶𝐷”⟩ ∪ ran ⟨“𝐸𝐹𝐺”⟩))
9 df-s4 14870 . . . . . 6 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
109a1i 11 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩))
1110rneqd 5929 . . . 4 (𝜑 → ran ⟨“𝐴𝐵𝐶𝐷”⟩ = ran (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩))
12 s3cli 14901 . . . . . 6 ⟨“𝐴𝐵𝐶”⟩ ∈ Word V
13 s1cli 14624 . . . . . 6 ⟨“𝐷”⟩ ∈ Word V
1412, 13pm3.2i 470 . . . . 5 (⟨“𝐴𝐵𝐶”⟩ ∈ Word V ∧ ⟨“𝐷”⟩ ∈ Word V)
15 ccatrn 14608 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word V ∧ ⟨“𝐷”⟩ ∈ Word V) → ran (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (ran ⟨“𝐴𝐵𝐶”⟩ ∪ ran ⟨“𝐷”⟩))
1614, 15mp1i 13 . . . 4 (𝜑 → ran (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (ran ⟨“𝐴𝐵𝐶”⟩ ∪ ran ⟨“𝐷”⟩))
17 s7rn.a . . . . . 6 (𝜑𝐴𝑉)
18 s7rn.b . . . . . 6 (𝜑𝐵𝑉)
19 s7rn.c . . . . . 6 (𝜑𝐶𝑉)
2017, 18, 19s3rn 14984 . . . . 5 (𝜑 → ran ⟨“𝐴𝐵𝐶”⟩ = {𝐴, 𝐵, 𝐶})
21 s7rn.d . . . . . 6 (𝜑𝐷𝑉)
22 s1rn 14618 . . . . . 6 (𝐷𝑉 → ran ⟨“𝐷”⟩ = {𝐷})
2321, 22syl 17 . . . . 5 (𝜑 → ran ⟨“𝐷”⟩ = {𝐷})
2420, 23uneq12d 4149 . . . 4 (𝜑 → (ran ⟨“𝐴𝐵𝐶”⟩ ∪ ran ⟨“𝐷”⟩) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷}))
2511, 16, 243eqtrd 2773 . . 3 (𝜑 → ran ⟨“𝐴𝐵𝐶𝐷”⟩ = ({𝐴, 𝐵, 𝐶} ∪ {𝐷}))
26 s7rn.e . . . 4 (𝜑𝐸𝑉)
27 s7rn.f . . . 4 (𝜑𝐹𝑉)
28 s7rn.g . . . 4 (𝜑𝐺𝑉)
2926, 27, 28s3rn 14984 . . 3 (𝜑 → ran ⟨“𝐸𝐹𝐺”⟩ = {𝐸, 𝐹, 𝐺})
3025, 29uneq12d 4149 . 2 (𝜑 → (ran ⟨“𝐴𝐵𝐶𝐷”⟩ ∪ ran ⟨“𝐸𝐹𝐺”⟩) = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
313, 8, 303eqtrd 2773 1 (𝜑 → ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  cun 3929  {csn 4606  {ctp 4610  ran crn 5666  (class class class)co 7412  Word cword 14533   ++ cconcat 14589  ⟨“cs1 14614  ⟨“cs3 14862  ⟨“cs4 14863  ⟨“cs7 14866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-nn 12248  df-n0 12509  df-z 12596  df-uz 12860  df-fz 13529  df-fzo 13676  df-hash 14351  df-word 14534  df-concat 14590  df-s1 14615  df-s2 14868  df-s3 14869  df-s4 14870  df-s5 14871  df-s6 14872  df-s7 14873
This theorem is referenced by:  s7f1o  14986  usgrexmpl1edg  47917  usgrexmpl2edg  47922
  Copyright terms: Public domain W3C validator