| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s7rn | Structured version Visualization version GIF version | ||
| Description: Range of a length 7 string. (Contributed by AV, 30-Jul-2025.) |
| Ref | Expression |
|---|---|
| s7rn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| s7rn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| s7rn.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| s7rn.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| s7rn.e | ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| s7rn.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| s7rn.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| s7rn | ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s4s3 14840 | . . . 4 ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹𝐺”〉) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹𝐺”〉)) |
| 3 | 2 | rneqd 5882 | . 2 ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = ran (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹𝐺”〉)) |
| 4 | s4cli 14791 | . . . 4 ⊢ 〈“𝐴𝐵𝐶𝐷”〉 ∈ Word V | |
| 5 | s3cli 14790 | . . . 4 ⊢ 〈“𝐸𝐹𝐺”〉 ∈ Word V | |
| 6 | 4, 5 | pm3.2i 470 | . . 3 ⊢ (〈“𝐴𝐵𝐶𝐷”〉 ∈ Word V ∧ 〈“𝐸𝐹𝐺”〉 ∈ Word V) |
| 7 | ccatrn 14499 | . . 3 ⊢ ((〈“𝐴𝐵𝐶𝐷”〉 ∈ Word V ∧ 〈“𝐸𝐹𝐺”〉 ∈ Word V) → ran (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹𝐺”〉) = (ran 〈“𝐴𝐵𝐶𝐷”〉 ∪ ran 〈“𝐸𝐹𝐺”〉)) | |
| 8 | 6, 7 | mp1i 13 | . 2 ⊢ (𝜑 → ran (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹𝐺”〉) = (ran 〈“𝐴𝐵𝐶𝐷”〉 ∪ ran 〈“𝐸𝐹𝐺”〉)) |
| 9 | df-s4 14759 | . . . . . 6 ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉)) |
| 11 | 10 | rneqd 5882 | . . . 4 ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶𝐷”〉 = ran (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉)) |
| 12 | s3cli 14790 | . . . . . 6 ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V | |
| 13 | s1cli 14515 | . . . . . 6 ⊢ 〈“𝐷”〉 ∈ Word V | |
| 14 | 12, 13 | pm3.2i 470 | . . . . 5 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word V ∧ 〈“𝐷”〉 ∈ Word V) |
| 15 | ccatrn 14499 | . . . . 5 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ Word V ∧ 〈“𝐷”〉 ∈ Word V) → ran (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) = (ran 〈“𝐴𝐵𝐶”〉 ∪ ran 〈“𝐷”〉)) | |
| 16 | 14, 15 | mp1i 13 | . . . 4 ⊢ (𝜑 → ran (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) = (ran 〈“𝐴𝐵𝐶”〉 ∪ ran 〈“𝐷”〉)) |
| 17 | s7rn.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 18 | s7rn.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 19 | s7rn.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 20 | 17, 18, 19 | s3rn 14873 | . . . . 5 ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶”〉 = {𝐴, 𝐵, 𝐶}) |
| 21 | s7rn.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 22 | s1rn 14509 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → ran 〈“𝐷”〉 = {𝐷}) | |
| 23 | 21, 22 | syl 17 | . . . . 5 ⊢ (𝜑 → ran 〈“𝐷”〉 = {𝐷}) |
| 24 | 20, 23 | uneq12d 4118 | . . . 4 ⊢ (𝜑 → (ran 〈“𝐴𝐵𝐶”〉 ∪ ran 〈“𝐷”〉) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷})) |
| 25 | 11, 16, 24 | 3eqtrd 2772 | . . 3 ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶𝐷”〉 = ({𝐴, 𝐵, 𝐶} ∪ {𝐷})) |
| 26 | s7rn.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑉) | |
| 27 | s7rn.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 28 | s7rn.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 29 | 26, 27, 28 | s3rn 14873 | . . 3 ⊢ (𝜑 → ran 〈“𝐸𝐹𝐺”〉 = {𝐸, 𝐹, 𝐺}) |
| 30 | 25, 29 | uneq12d 4118 | . 2 ⊢ (𝜑 → (ran 〈“𝐴𝐵𝐶𝐷”〉 ∪ ran 〈“𝐸𝐹𝐺”〉) = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) |
| 31 | 3, 8, 30 | 3eqtrd 2772 | 1 ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 {csn 4575 {ctp 4579 ran crn 5620 (class class class)co 7352 Word cword 14422 ++ cconcat 14479 〈“cs1 14505 〈“cs3 14751 〈“cs4 14752 〈“cs7 14755 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-concat 14480 df-s1 14506 df-s2 14757 df-s3 14758 df-s4 14759 df-s5 14760 df-s6 14761 df-s7 14762 |
| This theorem is referenced by: s7f1o 14875 usgrexmpl1edg 48148 usgrexmpl2edg 48153 |
| Copyright terms: Public domain | W3C validator |