| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s7rn | Structured version Visualization version GIF version | ||
| Description: Range of a length 7 string. (Contributed by AV, 30-Jul-2025.) |
| Ref | Expression |
|---|---|
| s7rn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| s7rn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| s7rn.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| s7rn.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| s7rn.e | ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| s7rn.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| s7rn.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| s7rn | ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s4s3 14951 | . . . 4 ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹𝐺”〉) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹𝐺”〉)) |
| 3 | 2 | rneqd 5929 | . 2 ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = ran (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹𝐺”〉)) |
| 4 | s4cli 14902 | . . . 4 ⊢ 〈“𝐴𝐵𝐶𝐷”〉 ∈ Word V | |
| 5 | s3cli 14901 | . . . 4 ⊢ 〈“𝐸𝐹𝐺”〉 ∈ Word V | |
| 6 | 4, 5 | pm3.2i 470 | . . 3 ⊢ (〈“𝐴𝐵𝐶𝐷”〉 ∈ Word V ∧ 〈“𝐸𝐹𝐺”〉 ∈ Word V) |
| 7 | ccatrn 14608 | . . 3 ⊢ ((〈“𝐴𝐵𝐶𝐷”〉 ∈ Word V ∧ 〈“𝐸𝐹𝐺”〉 ∈ Word V) → ran (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹𝐺”〉) = (ran 〈“𝐴𝐵𝐶𝐷”〉 ∪ ran 〈“𝐸𝐹𝐺”〉)) | |
| 8 | 6, 7 | mp1i 13 | . 2 ⊢ (𝜑 → ran (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹𝐺”〉) = (ran 〈“𝐴𝐵𝐶𝐷”〉 ∪ ran 〈“𝐸𝐹𝐺”〉)) |
| 9 | df-s4 14870 | . . . . . 6 ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉)) |
| 11 | 10 | rneqd 5929 | . . . 4 ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶𝐷”〉 = ran (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉)) |
| 12 | s3cli 14901 | . . . . . 6 ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V | |
| 13 | s1cli 14624 | . . . . . 6 ⊢ 〈“𝐷”〉 ∈ Word V | |
| 14 | 12, 13 | pm3.2i 470 | . . . . 5 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word V ∧ 〈“𝐷”〉 ∈ Word V) |
| 15 | ccatrn 14608 | . . . . 5 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ Word V ∧ 〈“𝐷”〉 ∈ Word V) → ran (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) = (ran 〈“𝐴𝐵𝐶”〉 ∪ ran 〈“𝐷”〉)) | |
| 16 | 14, 15 | mp1i 13 | . . . 4 ⊢ (𝜑 → ran (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) = (ran 〈“𝐴𝐵𝐶”〉 ∪ ran 〈“𝐷”〉)) |
| 17 | s7rn.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 18 | s7rn.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 19 | s7rn.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 20 | 17, 18, 19 | s3rn 14984 | . . . . 5 ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶”〉 = {𝐴, 𝐵, 𝐶}) |
| 21 | s7rn.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 22 | s1rn 14618 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → ran 〈“𝐷”〉 = {𝐷}) | |
| 23 | 21, 22 | syl 17 | . . . . 5 ⊢ (𝜑 → ran 〈“𝐷”〉 = {𝐷}) |
| 24 | 20, 23 | uneq12d 4149 | . . . 4 ⊢ (𝜑 → (ran 〈“𝐴𝐵𝐶”〉 ∪ ran 〈“𝐷”〉) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷})) |
| 25 | 11, 16, 24 | 3eqtrd 2773 | . . 3 ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶𝐷”〉 = ({𝐴, 𝐵, 𝐶} ∪ {𝐷})) |
| 26 | s7rn.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑉) | |
| 27 | s7rn.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 28 | s7rn.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 29 | 26, 27, 28 | s3rn 14984 | . . 3 ⊢ (𝜑 → ran 〈“𝐸𝐹𝐺”〉 = {𝐸, 𝐹, 𝐺}) |
| 30 | 25, 29 | uneq12d 4149 | . 2 ⊢ (𝜑 → (ran 〈“𝐴𝐵𝐶𝐷”〉 ∪ ran 〈“𝐸𝐹𝐺”〉) = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) |
| 31 | 3, 8, 30 | 3eqtrd 2773 | 1 ⊢ (𝜑 → ran 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∪ cun 3929 {csn 4606 {ctp 4610 ran crn 5666 (class class class)co 7412 Word cword 14533 ++ cconcat 14589 〈“cs1 14614 〈“cs3 14862 〈“cs4 14863 〈“cs7 14866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-n0 12509 df-z 12596 df-uz 12860 df-fz 13529 df-fzo 13676 df-hash 14351 df-word 14534 df-concat 14590 df-s1 14615 df-s2 14868 df-s3 14869 df-s4 14870 df-s5 14871 df-s6 14872 df-s7 14873 |
| This theorem is referenced by: s7f1o 14986 usgrexmpl1edg 47917 usgrexmpl2edg 47922 |
| Copyright terms: Public domain | W3C validator |