MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s7f1o Structured version   Visualization version   GIF version

Theorem s7f1o 14865
Description: A length 7 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by AV, 2-Aug-2025.)
Assertion
Ref Expression
s7f1o ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (𝐾 = ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ → 𝐾:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))

Proof of Theorem s7f1o
StepHypRef Expression
1 s7cli 14784 . . . . . . . 8 ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ∈ Word V
2 wrdf 14417 . . . . . . . 8 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ∈ Word V → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩))⟶V)
3 s7len 14801 . . . . . . . . . . 11 (♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩) = 7
43oveq2i 7352 . . . . . . . . . 10 (0..^(♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩)) = (0..^7)
54feq2i 6639 . . . . . . . . 9 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩))⟶V ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)⟶V)
6 ffn 6647 . . . . . . . . 9 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)⟶V → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7))
75, 6sylbi 217 . . . . . . . 8 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩))⟶V → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7))
81, 2, 7mp2b 10 . . . . . . 7 ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7)
98a1i 11 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7))
10 dffn4 6737 . . . . . 6 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7) ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩)
119, 10sylib 218 . . . . 5 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩)
12 simp1 1136 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐴𝑉)
13123ad2ant1 1133 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐴𝑉)
14 simp2 1137 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐵𝑉)
15143ad2ant1 1133 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐵𝑉)
16 simp3 1138 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐶𝑉)
17163ad2ant1 1133 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐶𝑉)
18 simp2 1137 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐷𝑉)
19 simp1 1136 . . . . . . . 8 ((𝐸𝑉𝐹𝑉𝐺𝑉) → 𝐸𝑉)
20193ad2ant3 1135 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐸𝑉)
21 simp2 1137 . . . . . . . 8 ((𝐸𝑉𝐹𝑉𝐺𝑉) → 𝐹𝑉)
22213ad2ant3 1135 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐹𝑉)
23 simp3 1138 . . . . . . . 8 ((𝐸𝑉𝐹𝑉𝐺𝑉) → 𝐺𝑉)
24233ad2ant3 1135 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐺𝑉)
2513, 15, 17, 18, 20, 22, 24s7rn 14864 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
26 foeq3 6729 . . . . . 6 (ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) → (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
2725, 26syl 17 . . . . 5 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
2811, 27mpbid 232 . . . 4 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
2928adantr 480 . . 3 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
30 7nn0 12395 . . . . . 6 7 ∈ ℕ0
31 hashfzo0 14329 . . . . . 6 (7 ∈ ℕ0 → (♯‘(0..^7)) = 7)
3230, 31ax-mp 5 . . . . 5 (♯‘(0..^7)) = 7
33 hash7g 14385 . . . . 5 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (♯‘(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) = 7)
3432, 33eqtr4id 2784 . . . 4 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (♯‘(0..^7)) = (♯‘(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
35 fzofi 13873 . . . . 5 (0..^7) ∈ Fin
36 tpfi 9205 . . . . . . 7 {𝐴, 𝐵, 𝐶} ∈ Fin
37 snfi 8960 . . . . . . 7 {𝐷} ∈ Fin
38 unfi 9075 . . . . . . 7 (({𝐴, 𝐵, 𝐶} ∈ Fin ∧ {𝐷} ∈ Fin) → ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∈ Fin)
3936, 37, 38mp2an 692 . . . . . 6 ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∈ Fin
40 tpfi 9205 . . . . . 6 {𝐸, 𝐹, 𝐺} ∈ Fin
41 unfi 9075 . . . . . 6 ((({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∈ Fin ∧ {𝐸, 𝐹, 𝐺} ∈ Fin) → (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin)
4239, 40, 41mp2an 692 . . . . 5 (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin
43 hashen 14246 . . . . 5 (((0..^7) ∈ Fin ∧ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin) → ((♯‘(0..^7)) = (♯‘(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) ↔ (0..^7) ≈ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
4435, 42, 43mp2an 692 . . . 4 ((♯‘(0..^7)) = (♯‘(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) ↔ (0..^7) ≈ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
4534, 44sylib 218 . . 3 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (0..^7) ≈ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
4642a1i 11 . . 3 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin)
47 fofinf1o 9211 . . 3 ((⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∧ (0..^7) ≈ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∧ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
4829, 45, 46, 47syl3anc 1373 . 2 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
49 f1oeq1 6747 . 2 (𝐾 = ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ → (𝐾:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
5048, 49syl5ibrcom 247 1 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (𝐾 = ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ → 𝐾:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  Vcvv 3434  cun 3898  {csn 4574  {ctp 4578   class class class wbr 5089  ran crn 5615   Fn wfn 6472  wf 6473  ontowfo 6475  1-1-ontowf1o 6476  cfv 6477  (class class class)co 7341  cen 8861  Fincfn 8864  0cc0 10998  7c7 12177  0cn0 12373  ..^cfzo 13546  chash 14229  Word cword 14412  ⟨“cs7 14745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-hash 14230  df-word 14413  df-concat 14470  df-s1 14496  df-s2 14747  df-s3 14748  df-s4 14749  df-s5 14750  df-s6 14751  df-s7 14752
This theorem is referenced by:  usgrexmpl1lem  48031  usgrexmpl2lem  48036
  Copyright terms: Public domain W3C validator