MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s7f1o Structured version   Visualization version   GIF version

Theorem s7f1o 14942
Description: A length 7 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by AV, 2-Aug-2025.)
Assertion
Ref Expression
s7f1o ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (𝐾 = ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ → 𝐾:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))

Proof of Theorem s7f1o
StepHypRef Expression
1 s7cli 14861 . . . . . . . 8 ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ∈ Word V
2 wrdf 14493 . . . . . . . 8 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ∈ Word V → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩))⟶V)
3 s7len 14878 . . . . . . . . . . 11 (♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩) = 7
43oveq2i 7405 . . . . . . . . . 10 (0..^(♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩)) = (0..^7)
54feq2i 6687 . . . . . . . . 9 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩))⟶V ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)⟶V)
6 ffn 6695 . . . . . . . . 9 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)⟶V → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7))
75, 6sylbi 217 . . . . . . . 8 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩))⟶V → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7))
81, 2, 7mp2b 10 . . . . . . 7 ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7)
98a1i 11 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7))
10 dffn4 6785 . . . . . 6 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7) ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩)
119, 10sylib 218 . . . . 5 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩)
12 simp1 1136 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐴𝑉)
13123ad2ant1 1133 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐴𝑉)
14 simp2 1137 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐵𝑉)
15143ad2ant1 1133 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐵𝑉)
16 simp3 1138 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐶𝑉)
17163ad2ant1 1133 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐶𝑉)
18 simp2 1137 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐷𝑉)
19 simp1 1136 . . . . . . . 8 ((𝐸𝑉𝐹𝑉𝐺𝑉) → 𝐸𝑉)
20193ad2ant3 1135 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐸𝑉)
21 simp2 1137 . . . . . . . 8 ((𝐸𝑉𝐹𝑉𝐺𝑉) → 𝐹𝑉)
22213ad2ant3 1135 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐹𝑉)
23 simp3 1138 . . . . . . . 8 ((𝐸𝑉𝐹𝑉𝐺𝑉) → 𝐺𝑉)
24233ad2ant3 1135 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐺𝑉)
2513, 15, 17, 18, 20, 22, 24s7rn 14941 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
26 foeq3 6777 . . . . . 6 (ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) → (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
2725, 26syl 17 . . . . 5 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
2811, 27mpbid 232 . . . 4 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
2928adantr 480 . . 3 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
30 7nn0 12480 . . . . . 6 7 ∈ ℕ0
31 hashfzo0 14405 . . . . . 6 (7 ∈ ℕ0 → (♯‘(0..^7)) = 7)
3230, 31ax-mp 5 . . . . 5 (♯‘(0..^7)) = 7
33 hash7g 14461 . . . . 5 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (♯‘(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) = 7)
3432, 33eqtr4id 2784 . . . 4 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (♯‘(0..^7)) = (♯‘(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
35 fzofi 13949 . . . . 5 (0..^7) ∈ Fin
36 tpfi 9294 . . . . . . 7 {𝐴, 𝐵, 𝐶} ∈ Fin
37 snfi 9020 . . . . . . 7 {𝐷} ∈ Fin
38 unfi 9148 . . . . . . 7 (({𝐴, 𝐵, 𝐶} ∈ Fin ∧ {𝐷} ∈ Fin) → ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∈ Fin)
3936, 37, 38mp2an 692 . . . . . 6 ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∈ Fin
40 tpfi 9294 . . . . . 6 {𝐸, 𝐹, 𝐺} ∈ Fin
41 unfi 9148 . . . . . 6 ((({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∈ Fin ∧ {𝐸, 𝐹, 𝐺} ∈ Fin) → (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin)
4239, 40, 41mp2an 692 . . . . 5 (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin
43 hashen 14322 . . . . 5 (((0..^7) ∈ Fin ∧ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin) → ((♯‘(0..^7)) = (♯‘(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) ↔ (0..^7) ≈ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
4435, 42, 43mp2an 692 . . . 4 ((♯‘(0..^7)) = (♯‘(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) ↔ (0..^7) ≈ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
4534, 44sylib 218 . . 3 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (0..^7) ≈ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
4642a1i 11 . . 3 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin)
47 fofinf1o 9301 . . 3 ((⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∧ (0..^7) ≈ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∧ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
4829, 45, 46, 47syl3anc 1373 . 2 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
49 f1oeq1 6795 . 2 (𝐾 = ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ → (𝐾:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
5048, 49syl5ibrcom 247 1 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (𝐾 = ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ → 𝐾:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2927  Vcvv 3455  cun 3920  {csn 4597  {ctp 4601   class class class wbr 5115  ran crn 5647   Fn wfn 6514  wf 6515  ontowfo 6517  1-1-ontowf1o 6518  cfv 6519  (class class class)co 7394  cen 8919  Fincfn 8922  0cc0 11086  7c7 12257  0cn0 12458  ..^cfzo 13628  chash 14305  Word cword 14488  ⟨“cs7 14822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-oadd 8447  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-dju 9872  df-card 9910  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-n0 12459  df-xnn0 12532  df-z 12546  df-uz 12810  df-fz 13482  df-fzo 13629  df-hash 14306  df-word 14489  df-concat 14546  df-s1 14571  df-s2 14824  df-s3 14825  df-s4 14826  df-s5 14827  df-s6 14828  df-s7 14829
This theorem is referenced by:  usgrexmpl1lem  47967  usgrexmpl2lem  47972
  Copyright terms: Public domain W3C validator