MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s7f1o Structured version   Visualization version   GIF version

Theorem s7f1o 15008
Description: A length 7 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by AV, 2-Aug-2025.)
Assertion
Ref Expression
s7f1o ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (𝐾 = ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ → 𝐾:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))

Proof of Theorem s7f1o
StepHypRef Expression
1 s7cli 14927 . . . . . . . 8 ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ∈ Word V
2 wrdf 14560 . . . . . . . 8 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ∈ Word V → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩))⟶V)
3 s7len 14944 . . . . . . . . . . 11 (♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩) = 7
43oveq2i 7446 . . . . . . . . . 10 (0..^(♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩)) = (0..^7)
54feq2i 6733 . . . . . . . . 9 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩))⟶V ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)⟶V)
6 ffn 6741 . . . . . . . . 9 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)⟶V → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7))
75, 6sylbi 217 . . . . . . . 8 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩))⟶V → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7))
81, 2, 7mp2b 10 . . . . . . 7 ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7)
98a1i 11 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7))
10 dffn4 6831 . . . . . 6 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7) ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩)
119, 10sylib 218 . . . . 5 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩)
12 simp1 1136 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐴𝑉)
13123ad2ant1 1133 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐴𝑉)
14 simp2 1137 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐵𝑉)
15143ad2ant1 1133 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐵𝑉)
16 simp3 1138 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐶𝑉)
17163ad2ant1 1133 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐶𝑉)
18 simp2 1137 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐷𝑉)
19 simp1 1136 . . . . . . . 8 ((𝐸𝑉𝐹𝑉𝐺𝑉) → 𝐸𝑉)
20193ad2ant3 1135 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐸𝑉)
21 simp2 1137 . . . . . . . 8 ((𝐸𝑉𝐹𝑉𝐺𝑉) → 𝐹𝑉)
22213ad2ant3 1135 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐹𝑉)
23 simp3 1138 . . . . . . . 8 ((𝐸𝑉𝐹𝑉𝐺𝑉) → 𝐺𝑉)
24233ad2ant3 1135 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐺𝑉)
2513, 15, 17, 18, 20, 22, 24s7rn 15007 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
26 foeq3 6823 . . . . . 6 (ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) → (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
2725, 26syl 17 . . . . 5 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
2811, 27mpbid 232 . . . 4 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
2928adantr 480 . . 3 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
30 7nn0 12552 . . . . . 6 7 ∈ ℕ0
31 hashfzo0 14472 . . . . . 6 (7 ∈ ℕ0 → (♯‘(0..^7)) = 7)
3230, 31ax-mp 5 . . . . 5 (♯‘(0..^7)) = 7
33 hash7g 14528 . . . . 5 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (♯‘(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) = 7)
3432, 33eqtr4id 2795 . . . 4 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (♯‘(0..^7)) = (♯‘(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
35 fzofi 14018 . . . . 5 (0..^7) ∈ Fin
36 tpfi 9369 . . . . . . 7 {𝐴, 𝐵, 𝐶} ∈ Fin
37 snfi 9088 . . . . . . 7 {𝐷} ∈ Fin
38 unfi 9216 . . . . . . 7 (({𝐴, 𝐵, 𝐶} ∈ Fin ∧ {𝐷} ∈ Fin) → ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∈ Fin)
3936, 37, 38mp2an 692 . . . . . 6 ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∈ Fin
40 tpfi 9369 . . . . . 6 {𝐸, 𝐹, 𝐺} ∈ Fin
41 unfi 9216 . . . . . 6 ((({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∈ Fin ∧ {𝐸, 𝐹, 𝐺} ∈ Fin) → (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin)
4239, 40, 41mp2an 692 . . . . 5 (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin
43 hashen 14389 . . . . 5 (((0..^7) ∈ Fin ∧ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin) → ((♯‘(0..^7)) = (♯‘(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) ↔ (0..^7) ≈ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
4435, 42, 43mp2an 692 . . . 4 ((♯‘(0..^7)) = (♯‘(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) ↔ (0..^7) ≈ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
4534, 44sylib 218 . . 3 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (0..^7) ≈ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
4642a1i 11 . . 3 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin)
47 fofinf1o 9376 . . 3 ((⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∧ (0..^7) ≈ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∧ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
4829, 45, 46, 47syl3anc 1371 . 2 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
49 f1oeq1 6841 . 2 (𝐾 = ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ → (𝐾:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
5048, 49syl5ibrcom 247 1 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (𝐾 = ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ → 𝐾:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1538  wcel 2107  wne 2939  Vcvv 3479  cun 3962  {csn 4632  {ctp 4636   class class class wbr 5149  ran crn 5691   Fn wfn 6561  wf 6562  ontowfo 6564  1-1-ontowf1o 6565  cfv 6566  (class class class)co 7435  cen 8987  Fincfn 8990  0cc0 11159  7c7 12330  0cn0 12530  ..^cfzo 13697  chash 14372  Word cword 14555  ⟨“cs7 14888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-2o 8512  df-oadd 8515  df-er 8750  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-dju 9945  df-card 9983  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-nn 12271  df-2 12333  df-3 12334  df-4 12335  df-5 12336  df-6 12337  df-7 12338  df-n0 12531  df-xnn0 12604  df-z 12618  df-uz 12883  df-fz 13551  df-fzo 13698  df-hash 14373  df-word 14556  df-concat 14612  df-s1 14637  df-s2 14890  df-s3 14891  df-s4 14892  df-s5 14893  df-s6 14894  df-s7 14895
This theorem is referenced by:  usgrexmpl1lem  47929  usgrexmpl2lem  47934
  Copyright terms: Public domain W3C validator