MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s7f1o Structured version   Visualization version   GIF version

Theorem s7f1o 15017
Description: A length 7 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by AV, 2-Aug-2025.)
Assertion
Ref Expression
s7f1o ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (𝐾 = ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ → 𝐾:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))

Proof of Theorem s7f1o
StepHypRef Expression
1 s7cli 14936 . . . . . . . 8 ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ∈ Word V
2 wrdf 14569 . . . . . . . 8 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ∈ Word V → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩))⟶V)
3 s7len 14953 . . . . . . . . . . 11 (♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩) = 7
43oveq2i 7461 . . . . . . . . . 10 (0..^(♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩)) = (0..^7)
54feq2i 6741 . . . . . . . . 9 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩))⟶V ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)⟶V)
6 ffn 6749 . . . . . . . . 9 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)⟶V → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7))
75, 6sylbi 217 . . . . . . . 8 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩))⟶V → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7))
81, 2, 7mp2b 10 . . . . . . 7 ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7)
98a1i 11 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7))
10 dffn4 6842 . . . . . 6 (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ Fn (0..^7) ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩)
119, 10sylib 218 . . . . 5 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩)
12 simp1 1136 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐴𝑉)
13123ad2ant1 1133 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐴𝑉)
14 simp2 1137 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐵𝑉)
15143ad2ant1 1133 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐵𝑉)
16 simp3 1138 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐶𝑉)
17163ad2ant1 1133 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐶𝑉)
18 simp2 1137 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐷𝑉)
19 simp1 1136 . . . . . . . 8 ((𝐸𝑉𝐹𝑉𝐺𝑉) → 𝐸𝑉)
20193ad2ant3 1135 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐸𝑉)
21 simp2 1137 . . . . . . . 8 ((𝐸𝑉𝐹𝑉𝐺𝑉) → 𝐹𝑉)
22213ad2ant3 1135 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐹𝑉)
23 simp3 1138 . . . . . . . 8 ((𝐸𝑉𝐹𝑉𝐺𝑉) → 𝐺𝑉)
24233ad2ant3 1135 . . . . . . 7 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → 𝐺𝑉)
2513, 15, 17, 18, 20, 22, 24s7rn 15016 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
26 foeq3 6834 . . . . . 6 (ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) → (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
2725, 26syl 17 . . . . 5 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→ran ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
2811, 27mpbid 232 . . . 4 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
2928adantr 480 . . 3 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
30 7nn0 12577 . . . . . 6 7 ∈ ℕ0
31 hashfzo0 14481 . . . . . 6 (7 ∈ ℕ0 → (♯‘(0..^7)) = 7)
3230, 31ax-mp 5 . . . . 5 (♯‘(0..^7)) = 7
33 hash7g 14537 . . . . 5 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (♯‘(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) = 7)
3432, 33eqtr4id 2799 . . . 4 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (♯‘(0..^7)) = (♯‘(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
35 fzofi 14027 . . . . 5 (0..^7) ∈ Fin
36 tpfi 9395 . . . . . . 7 {𝐴, 𝐵, 𝐶} ∈ Fin
37 snfi 9111 . . . . . . 7 {𝐷} ∈ Fin
38 unfi 9240 . . . . . . 7 (({𝐴, 𝐵, 𝐶} ∈ Fin ∧ {𝐷} ∈ Fin) → ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∈ Fin)
3936, 37, 38mp2an 691 . . . . . 6 ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∈ Fin
40 tpfi 9395 . . . . . 6 {𝐸, 𝐹, 𝐺} ∈ Fin
41 unfi 9240 . . . . . 6 ((({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∈ Fin ∧ {𝐸, 𝐹, 𝐺} ∈ Fin) → (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin)
4239, 40, 41mp2an 691 . . . . 5 (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin
43 hashen 14398 . . . . 5 (((0..^7) ∈ Fin ∧ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin) → ((♯‘(0..^7)) = (♯‘(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) ↔ (0..^7) ≈ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
4435, 42, 43mp2an 691 . . . 4 ((♯‘(0..^7)) = (♯‘(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})) ↔ (0..^7) ≈ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
4534, 44sylib 218 . . 3 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (0..^7) ≈ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
4642a1i 11 . . 3 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin)
47 fofinf1o 9402 . . 3 ((⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∧ (0..^7) ≈ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∧ (({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ∈ Fin) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
4829, 45, 46, 47syl3anc 1371 . 2 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}))
49 f1oeq1 6852 . 2 (𝐾 = ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ → (𝐾:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺}) ↔ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
5048, 49syl5ibrcom 247 1 ((((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐷𝑉 ∧ (𝐸𝑉𝐹𝑉𝐺𝑉)) ∧ ((((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐴𝐸𝐴𝐹𝐴𝐺)) ∧ ((𝐵𝐶𝐵𝐷) ∧ (𝐵𝐸𝐵𝐹𝐵𝐺)) ∧ (𝐶𝐷 ∧ (𝐶𝐸𝐶𝐹𝐶𝐺))) ∧ ((𝐷𝐸𝐷𝐹𝐷𝐺) ∧ (𝐸𝐹𝐸𝐺𝐹𝐺)))) → (𝐾 = ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ → 𝐾:(0..^7)–1-1-onto→(({𝐴, 𝐵, 𝐶} ∪ {𝐷}) ∪ {𝐸, 𝐹, 𝐺})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cun 3974  {csn 4648  {ctp 4652   class class class wbr 5166  ran crn 5701   Fn wfn 6570  wf 6571  ontowfo 6573  1-1-ontowf1o 6574  cfv 6575  (class class class)co 7450  cen 9002  Fincfn 9005  0cc0 11186  7c7 12355  0cn0 12555  ..^cfzo 13713  chash 14381  Word cword 14564  ⟨“cs7 14897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-oadd 8528  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-dju 9972  df-card 10010  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-7 12363  df-n0 12556  df-xnn0 12628  df-z 12642  df-uz 12906  df-fz 13570  df-fzo 13714  df-hash 14382  df-word 14565  df-concat 14621  df-s1 14646  df-s2 14899  df-s3 14900  df-s4 14901  df-s5 14902  df-s6 14903  df-s7 14904
This theorem is referenced by:  usgrexmpl1lem  47838  usgrexmpl2lem  47843
  Copyright terms: Public domain W3C validator