![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > usgrexmpl1edg | Structured version Visualization version GIF version |
Description: The edges {0, 1}, {1, 2}, {0, 2}, {0, 3}, {3, 4}, {3, 5}, {4, 5} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
Ref | Expression |
---|---|
usgrexmpl1.v | ⊢ 𝑉 = (0...5) |
usgrexmpl1.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 |
usgrexmpl1.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
Ref | Expression |
---|---|
usgrexmpl1edg | ⊢ (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{3, 4}, {3, 5}, {4, 5}})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 29089 | . 2 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | usgrexmpl1.g | . . . . 5 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
3 | 2 | fveq2i 6914 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘〈𝑉, 𝐸〉) |
4 | usgrexmpl1.v | . . . . . 6 ⊢ 𝑉 = (0...5) | |
5 | 4 | ovexi 7469 | . . . . 5 ⊢ 𝑉 ∈ V |
6 | usgrexmpl1.e | . . . . . 6 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 | |
7 | s7cli 14927 | . . . . . 6 ⊢ 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 ∈ Word V | |
8 | 6, 7 | eqeltri 2836 | . . . . 5 ⊢ 𝐸 ∈ Word V |
9 | opiedgfv 29047 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ Word V) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
10 | 5, 8, 9 | mp2an 692 | . . . 4 ⊢ (iEdg‘〈𝑉, 𝐸〉) = 𝐸 |
11 | 3, 10 | eqtri 2764 | . . 3 ⊢ (iEdg‘𝐺) = 𝐸 |
12 | 11 | rneqi 5952 | . 2 ⊢ ran (iEdg‘𝐺) = ran 𝐸 |
13 | 6 | rneqi 5952 | . . 3 ⊢ ran 𝐸 = ran 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 |
14 | prex 5444 | . . . 4 ⊢ {0, 1} ∈ V | |
15 | id 22 | . . . . 5 ⊢ ({0, 1} ∈ V → {0, 1} ∈ V) | |
16 | prex 5444 | . . . . . 6 ⊢ {0, 2} ∈ V | |
17 | 16 | a1i 11 | . . . . 5 ⊢ ({0, 1} ∈ V → {0, 2} ∈ V) |
18 | prex 5444 | . . . . . 6 ⊢ {1, 2} ∈ V | |
19 | 18 | a1i 11 | . . . . 5 ⊢ ({0, 1} ∈ V → {1, 2} ∈ V) |
20 | prex 5444 | . . . . . 6 ⊢ {0, 3} ∈ V | |
21 | 20 | a1i 11 | . . . . 5 ⊢ ({0, 1} ∈ V → {0, 3} ∈ V) |
22 | prex 5444 | . . . . . 6 ⊢ {3, 4} ∈ V | |
23 | 22 | a1i 11 | . . . . 5 ⊢ ({0, 1} ∈ V → {3, 4} ∈ V) |
24 | prex 5444 | . . . . . 6 ⊢ {3, 5} ∈ V | |
25 | 24 | a1i 11 | . . . . 5 ⊢ ({0, 1} ∈ V → {3, 5} ∈ V) |
26 | prex 5444 | . . . . . 6 ⊢ {4, 5} ∈ V | |
27 | 26 | a1i 11 | . . . . 5 ⊢ ({0, 1} ∈ V → {4, 5} ∈ V) |
28 | 15, 17, 19, 21, 23, 25, 27 | s7rn 15007 | . . . 4 ⊢ ({0, 1} ∈ V → ran 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 = (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}})) |
29 | 14, 28 | ax-mp 5 | . . 3 ⊢ ran 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 = (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) |
30 | uncom 4169 | . . . . 5 ⊢ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) = ({{0, 3}} ∪ {{0, 1}, {0, 2}, {1, 2}}) | |
31 | 30 | uneq1i 4175 | . . . 4 ⊢ (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) = (({{0, 3}} ∪ {{0, 1}, {0, 2}, {1, 2}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) |
32 | unass 4183 | . . . 4 ⊢ (({{0, 3}} ∪ {{0, 1}, {0, 2}, {1, 2}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) = ({{0, 3}} ∪ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{3, 4}, {3, 5}, {4, 5}})) | |
33 | 31, 32 | eqtri 2764 | . . 3 ⊢ (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) = ({{0, 3}} ∪ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{3, 4}, {3, 5}, {4, 5}})) |
34 | 13, 29, 33 | 3eqtri 2768 | . 2 ⊢ ran 𝐸 = ({{0, 3}} ∪ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{3, 4}, {3, 5}, {4, 5}})) |
35 | 1, 12, 34 | 3eqtri 2768 | 1 ⊢ (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{3, 4}, {3, 5}, {4, 5}})) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2107 Vcvv 3479 ∪ cun 3962 {csn 4632 {cpr 4634 {ctp 4636 〈cop 4638 ran crn 5691 ‘cfv 6566 (class class class)co 7435 0cc0 11159 1c1 11160 2c2 12325 3c3 12326 4c4 12327 5c5 12328 ...cfz 13550 Word cword 14555 〈“cs7 14888 iEdgciedg 29037 Edgcedg 29087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-card 9983 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-nn 12271 df-n0 12531 df-z 12618 df-uz 12883 df-fz 13551 df-fzo 13698 df-hash 14373 df-word 14556 df-concat 14612 df-s1 14637 df-s2 14890 df-s3 14891 df-s4 14892 df-s5 14893 df-s6 14894 df-s7 14895 df-iedg 29039 df-edg 29088 |
This theorem is referenced by: usgrexmpl1tri 47933 |
Copyright terms: Public domain | W3C validator |