![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > usgrexmpl1edg | Structured version Visualization version GIF version |
Description: The edges {0, 1}, {1, 2}, {0, 2}, {0, 3}, {3, 4}, {3, 5}, {4, 5} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
Ref | Expression |
---|---|
usgrexmpl1.v | ⊢ 𝑉 = (0...5) |
usgrexmpl1.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 |
usgrexmpl1.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
Ref | Expression |
---|---|
usgrexmpl1edg | ⊢ (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{3, 4}, {3, 5}, {4, 5}})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 29086 | . 2 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | usgrexmpl1.g | . . . . 5 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
3 | 2 | fveq2i 6925 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘〈𝑉, 𝐸〉) |
4 | usgrexmpl1.v | . . . . . 6 ⊢ 𝑉 = (0...5) | |
5 | 4 | ovexi 7484 | . . . . 5 ⊢ 𝑉 ∈ V |
6 | usgrexmpl1.e | . . . . . 6 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 | |
7 | s7cli 14936 | . . . . . 6 ⊢ 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 ∈ Word V | |
8 | 6, 7 | eqeltri 2840 | . . . . 5 ⊢ 𝐸 ∈ Word V |
9 | opiedgfv 29044 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ Word V) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
10 | 5, 8, 9 | mp2an 691 | . . . 4 ⊢ (iEdg‘〈𝑉, 𝐸〉) = 𝐸 |
11 | 3, 10 | eqtri 2768 | . . 3 ⊢ (iEdg‘𝐺) = 𝐸 |
12 | 11 | rneqi 5962 | . 2 ⊢ ran (iEdg‘𝐺) = ran 𝐸 |
13 | 6 | rneqi 5962 | . . 3 ⊢ ran 𝐸 = ran 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 |
14 | prex 5452 | . . . 4 ⊢ {0, 1} ∈ V | |
15 | id 22 | . . . . 5 ⊢ ({0, 1} ∈ V → {0, 1} ∈ V) | |
16 | prex 5452 | . . . . . 6 ⊢ {0, 2} ∈ V | |
17 | 16 | a1i 11 | . . . . 5 ⊢ ({0, 1} ∈ V → {0, 2} ∈ V) |
18 | prex 5452 | . . . . . 6 ⊢ {1, 2} ∈ V | |
19 | 18 | a1i 11 | . . . . 5 ⊢ ({0, 1} ∈ V → {1, 2} ∈ V) |
20 | prex 5452 | . . . . . 6 ⊢ {0, 3} ∈ V | |
21 | 20 | a1i 11 | . . . . 5 ⊢ ({0, 1} ∈ V → {0, 3} ∈ V) |
22 | prex 5452 | . . . . . 6 ⊢ {3, 4} ∈ V | |
23 | 22 | a1i 11 | . . . . 5 ⊢ ({0, 1} ∈ V → {3, 4} ∈ V) |
24 | prex 5452 | . . . . . 6 ⊢ {3, 5} ∈ V | |
25 | 24 | a1i 11 | . . . . 5 ⊢ ({0, 1} ∈ V → {3, 5} ∈ V) |
26 | prex 5452 | . . . . . 6 ⊢ {4, 5} ∈ V | |
27 | 26 | a1i 11 | . . . . 5 ⊢ ({0, 1} ∈ V → {4, 5} ∈ V) |
28 | 15, 17, 19, 21, 23, 25, 27 | s7rn 15016 | . . . 4 ⊢ ({0, 1} ∈ V → ran 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 = (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}})) |
29 | 14, 28 | ax-mp 5 | . . 3 ⊢ ran 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 = (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) |
30 | uncom 4181 | . . . . 5 ⊢ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) = ({{0, 3}} ∪ {{0, 1}, {0, 2}, {1, 2}}) | |
31 | 30 | uneq1i 4187 | . . . 4 ⊢ (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) = (({{0, 3}} ∪ {{0, 1}, {0, 2}, {1, 2}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) |
32 | unass 4195 | . . . 4 ⊢ (({{0, 3}} ∪ {{0, 1}, {0, 2}, {1, 2}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) = ({{0, 3}} ∪ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{3, 4}, {3, 5}, {4, 5}})) | |
33 | 31, 32 | eqtri 2768 | . . 3 ⊢ (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) = ({{0, 3}} ∪ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{3, 4}, {3, 5}, {4, 5}})) |
34 | 13, 29, 33 | 3eqtri 2772 | . 2 ⊢ ran 𝐸 = ({{0, 3}} ∪ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{3, 4}, {3, 5}, {4, 5}})) |
35 | 1, 12, 34 | 3eqtri 2772 | 1 ⊢ (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{3, 4}, {3, 5}, {4, 5}})) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 {csn 4648 {cpr 4650 {ctp 4652 〈cop 4654 ran crn 5701 ‘cfv 6575 (class class class)co 7450 0cc0 11186 1c1 11187 2c2 12350 3c3 12351 4c4 12352 5c5 12353 ...cfz 13569 Word cword 14564 〈“cs7 14897 iEdgciedg 29034 Edgcedg 29084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-n0 12556 df-z 12642 df-uz 12906 df-fz 13570 df-fzo 13714 df-hash 14382 df-word 14565 df-concat 14621 df-s1 14646 df-s2 14899 df-s3 14900 df-s4 14901 df-s5 14902 df-s6 14903 df-s7 14904 df-iedg 29036 df-edg 29085 |
This theorem is referenced by: usgrexmpl1tri 47842 |
Copyright terms: Public domain | W3C validator |