Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqfeq | Structured version Visualization version GIF version |
Description: Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
seqfeq.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
seqfeq.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
seqfeq | ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqfeq.1 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | seqfn 13484 | . . 3 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) |
4 | seqfn 13484 | . . 3 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , 𝐺) Fn (ℤ≥‘𝑀)) | |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐺) Fn (ℤ≥‘𝑀)) |
6 | simpr 488 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ (ℤ≥‘𝑀)) | |
7 | elfzuz 13006 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝑥) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
8 | seqfeq.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
9 | 7, 8 | sylan2 596 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑥)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
10 | 9 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...𝑥)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
11 | 6, 10 | seqfveq 13498 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐺)‘𝑥)) |
12 | 3, 5, 11 | eqfnfvd 6824 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 Fn wfn 6344 ‘cfv 6349 (class class class)co 7182 ℤcz 12074 ℤ≥cuz 12336 ...cfz 12993 seqcseq 13472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-om 7612 df-1st 7726 df-2nd 7727 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-er 8332 df-en 8568 df-dom 8569 df-sdom 8570 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-nn 11729 df-n0 11989 df-z 12075 df-uz 12337 df-fz 12994 df-seq 13473 |
This theorem is referenced by: seqres 13501 sumeq2ii 15155 zsum 15180 fsumcvg2 15189 isumshft 15299 geolim2 15331 cvgrat 15343 mertenslem2 15345 prodeq2ii 15371 zprod 15395 abelthlem6 25195 abelthlem9 25199 logtayl 25415 leibpilem2 25691 leibpi 25692 lgamgulmlem4 25781 iprodefisum 33292 |
Copyright terms: Public domain | W3C validator |