MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprod1p Structured version   Visualization version   GIF version

Theorem fprod1p 15875
Description: Separate out the first term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.)
Hypotheses
Ref Expression
fprod1p.1 (𝜑𝑁 ∈ (ℤ𝑀))
fprod1p.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fprod1p.3 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
fprod1p (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
Distinct variable groups:   𝐵,𝑘   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprod1p
StepHypRef Expression
1 fprod1p.1 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz1 13434 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
31, 2syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
43elfzelzd 13428 . . . . . 6 (𝜑𝑀 ∈ ℤ)
5 fzsn 13469 . . . . . 6 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
64, 5syl 17 . . . . 5 (𝜑 → (𝑀...𝑀) = {𝑀})
76ineq1d 4170 . . . 4 (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ({𝑀} ∩ ((𝑀 + 1)...𝑁)))
84zred 12580 . . . . . 6 (𝜑𝑀 ∈ ℝ)
98ltp1d 12055 . . . . 5 (𝜑𝑀 < (𝑀 + 1))
10 fzdisj 13454 . . . . 5 (𝑀 < (𝑀 + 1) → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
119, 10syl 17 . . . 4 (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
127, 11eqtr3d 2766 . . 3 (𝜑 → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)
13 fzsplit 13453 . . . . 5 (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)))
143, 13syl 17 . . . 4 (𝜑 → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)))
156uneq1d 4118 . . . 4 (𝜑 → ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
1614, 15eqtrd 2764 . . 3 (𝜑 → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
17 fzfid 13880 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
18 fprod1p.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
1912, 16, 17, 18fprodsplit 15873 . 2 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ {𝑀}𝐴 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
20 fprod1p.3 . . . . . 6 (𝑘 = 𝑀𝐴 = 𝐵)
2120eleq1d 2813 . . . . 5 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
2218ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
2321, 22, 3rspcdva 3578 . . . 4 (𝜑𝐵 ∈ ℂ)
2420prodsn 15869 . . . 4 ((𝑀 ∈ (𝑀...𝑁) ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
253, 23, 24syl2anc 584 . . 3 (𝜑 → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
2625oveq1d 7364 . 2 (𝜑 → (∏𝑘 ∈ {𝑀}𝐴 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
2719, 26eqtrd 2764 1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3901  cin 3902  c0 4284  {csn 4577   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cz 12471  cuz 12735  ...cfz 13410  cprod 15810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-prod 15811
This theorem is referenced by:  fallfacfwd  15943  0fallfac  15944  etransclem4  46239  etransclem31  46266  etransclem35  46270
  Copyright terms: Public domain W3C validator