![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsum1p | Structured version Visualization version GIF version |
Description: Separate out the first term in a finite sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
fsumm1.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
fsumm1.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
fsum1p.3 | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fsum1p | ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumm1.1 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | eluzel2 12833 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | fzsn 13549 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑀...𝑀) = {𝑀}) |
6 | 5 | ineq1d 4212 | . . . 4 ⊢ (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ({𝑀} ∩ ((𝑀 + 1)...𝑁))) |
7 | 3 | zred 12672 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
8 | 7 | ltp1d 12150 | . . . . 5 ⊢ (𝜑 → 𝑀 < (𝑀 + 1)) |
9 | fzdisj 13534 | . . . . 5 ⊢ (𝑀 < (𝑀 + 1) → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) |
11 | 6, 10 | eqtr3d 2772 | . . 3 ⊢ (𝜑 → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅) |
12 | eluzfz1 13514 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
13 | 1, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
14 | fzsplit 13533 | . . . . 5 ⊢ (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁))) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁))) |
16 | 5 | uneq1d 4163 | . . . 4 ⊢ (𝜑 → ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) |
17 | 15, 16 | eqtrd 2770 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) |
18 | fzfid 13944 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | |
19 | fsumm1.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
20 | 11, 17, 18, 19 | fsumsplit 15693 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ {𝑀}𝐴 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
21 | fsum1p.3 | . . . . . 6 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) | |
22 | 21 | eleq1d 2816 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
23 | 19 | ralrimiva 3144 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
24 | 22, 23, 13 | rspcdva 3614 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
25 | 21 | sumsn 15698 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
26 | 3, 24, 25 | syl2anc 582 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
27 | 26 | oveq1d 7428 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ {𝑀}𝐴 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) = (𝐵 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
28 | 20, 27 | eqtrd 2770 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∪ cun 3947 ∩ cin 3948 ∅c0 4323 {csn 4629 class class class wbr 5149 ‘cfv 6544 (class class class)co 7413 ℂcc 11112 1c1 11115 + caddc 11117 < clt 11254 ℤcz 12564 ℤ≥cuz 12828 ...cfz 13490 Σcsu 15638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-inf2 9640 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-oi 9509 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-n0 12479 df-z 12565 df-uz 12829 df-rp 12981 df-fz 13491 df-fzo 13634 df-seq 13973 df-exp 14034 df-hash 14297 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-clim 15438 df-sum 15639 |
This theorem is referenced by: telfsumo 15754 fsumparts 15758 arisum2 15813 pwdif 15820 binomfallfaclem2 15990 bpolydiflem 16004 pwp1fsum 16340 ovolicc2lem4 25271 advlogexp 26397 ftalem5 26815 rplogsumlem2 27222 axlowdimlem16 28480 fwddifnp1 35439 sticksstones10 41279 sticksstones12a 41281 etransclem24 45274 etransclem32 45282 etransclem35 45285 altgsumbcALT 47119 nn0sumshdiglemA 47394 nn0sumshdiglemB 47395 |
Copyright terms: Public domain | W3C validator |