| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlklnwwlknupgr | Structured version Visualization version GIF version | ||
| Description: A walk of length 𝑁 as word corresponds to a walk with length 𝑁 in a pseudograph. This variant of wlklnwwlkn 29883 does not require 𝐺 to be a simple pseudograph, but it requires (indirectly) the Axiom of Choice for its proof. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.) |
| Ref | Expression |
|---|---|
| wlklnwwlknupgr | ⊢ (𝐺 ∈ UPGraph → (∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁) ↔ 𝑃 ∈ (𝑁 WWalksN 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlklnwwlkln1 29867 | . . 3 ⊢ (𝐺 ∈ UPGraph → ((𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁) → 𝑃 ∈ (𝑁 WWalksN 𝐺))) | |
| 2 | 1 | exlimdv 1934 | . 2 ⊢ (𝐺 ∈ UPGraph → (∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁) → 𝑃 ∈ (𝑁 WWalksN 𝐺))) |
| 3 | wlklnwwlklnupgr2 29884 | . 2 ⊢ (𝐺 ∈ UPGraph → (𝑃 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁))) | |
| 4 | 2, 3 | impbid 212 | 1 ⊢ (𝐺 ∈ UPGraph → (∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (♯‘𝑓) = 𝑁) ↔ 𝑃 ∈ (𝑁 WWalksN 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ♯chash 14244 UPGraphcupgr 29079 Walkscwlks 29596 WWalksN cwwlksn 29825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-ac2 10365 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-map 8761 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9805 df-card 9843 df-ac 10018 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-n0 12393 df-xnn0 12466 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 df-hash 14245 df-word 14428 df-edg 29047 df-uhgr 29057 df-upgr 29081 df-wlks 29599 df-wwlks 29829 df-wwlksn 29830 |
| This theorem is referenced by: s3wwlks2on 29955 |
| Copyright terms: Public domain | W3C validator |