Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goldbachthlem1 Structured version   Visualization version   GIF version

Theorem goldbachthlem1 44997
Description: Lemma 1 for goldbachth 44999. (Contributed by AV, 1-Aug-2021.)
Assertion
Ref Expression
goldbachthlem1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2))

Proof of Theorem goldbachthlem1
StepHypRef Expression
1 simp2 1136 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → 𝑀 ∈ ℕ0)
2 nn0z 12343 . . . . 5 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
3 nn0z 12343 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4 znnsub 12366 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
52, 3, 4syl2anr 597 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
65biimp3a 1468 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (𝑁𝑀) ∈ ℕ)
7 fmtnodvds 44996 . . 3 ((𝑀 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ) → (FermatNo‘𝑀) ∥ ((FermatNo‘(𝑀 + (𝑁𝑀))) − 2))
81, 6, 7syl2anc 584 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘(𝑀 + (𝑁𝑀))) − 2))
9 nn0cn 12243 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
10 nn0cn 12243 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
119, 10anim12ci 614 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))
12113adant3 1131 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))
13 pncan3 11229 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + (𝑁𝑀)) = 𝑁)
1412, 13syl 17 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (𝑀 + (𝑁𝑀)) = 𝑁)
1514eqcomd 2744 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → 𝑁 = (𝑀 + (𝑁𝑀)))
1615fveq2d 6778 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑁) = (FermatNo‘(𝑀 + (𝑁𝑀))))
1716oveq1d 7290 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) − 2) = ((FermatNo‘(𝑀 + (𝑁𝑀))) − 2))
188, 17breqtrrd 5102 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869   + caddc 10874   < clt 11009  cmin 11205  cn 11973  2c2 12028  0cn0 12233  cz 12319  cdvds 15963  FermatNocfmtno 44979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-prod 15616  df-dvds 15964  df-fmtno 44980
This theorem is referenced by:  goldbachthlem2  44998
  Copyright terms: Public domain W3C validator