| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > goldbachthlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for goldbachth 47586. (Contributed by AV, 1-Aug-2021.) |
| Ref | Expression |
|---|---|
| goldbachthlem1 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℕ0) | |
| 2 | nn0z 12493 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ) | |
| 3 | nn0z 12493 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 4 | znnsub 12518 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) | |
| 5 | 2, 3, 4 | syl2anr 597 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) |
| 6 | 5 | biimp3a 1471 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (𝑁 − 𝑀) ∈ ℕ) |
| 7 | fmtnodvds 47583 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ) → (FermatNo‘𝑀) ∥ ((FermatNo‘(𝑀 + (𝑁 − 𝑀))) − 2)) | |
| 8 | 1, 6, 7 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘(𝑀 + (𝑁 − 𝑀))) − 2)) |
| 9 | nn0cn 12391 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 10 | nn0cn 12391 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ) | |
| 11 | 9, 10 | anim12ci 614 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
| 12 | 11 | 3adant3 1132 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
| 13 | pncan3 11368 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + (𝑁 − 𝑀)) = 𝑁) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (𝑀 + (𝑁 − 𝑀)) = 𝑁) |
| 15 | 14 | eqcomd 2737 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → 𝑁 = (𝑀 + (𝑁 − 𝑀))) |
| 16 | 15 | fveq2d 6826 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (FermatNo‘𝑁) = (FermatNo‘(𝑀 + (𝑁 − 𝑀)))) |
| 17 | 16 | oveq1d 7361 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → ((FermatNo‘𝑁) − 2) = ((FermatNo‘(𝑀 + (𝑁 − 𝑀))) − 2)) |
| 18 | 8, 17 | breqtrrd 5117 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 + caddc 11009 < clt 11146 − cmin 11344 ℕcn 12125 2c2 12180 ℕ0cn0 12381 ℤcz 12468 ∥ cdvds 16163 FermatNocfmtno 47566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-prod 15811 df-dvds 16164 df-fmtno 47567 |
| This theorem is referenced by: goldbachthlem2 47585 |
| Copyright terms: Public domain | W3C validator |