![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > goldbachthlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for goldbachth 46887. (Contributed by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
goldbachthlem1 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1135 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℕ0) | |
2 | nn0z 12613 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ) | |
3 | nn0z 12613 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
4 | znnsub 12638 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) | |
5 | 2, 3, 4 | syl2anr 596 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) |
6 | 5 | biimp3a 1466 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (𝑁 − 𝑀) ∈ ℕ) |
7 | fmtnodvds 46884 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ) → (FermatNo‘𝑀) ∥ ((FermatNo‘(𝑀 + (𝑁 − 𝑀))) − 2)) | |
8 | 1, 6, 7 | syl2anc 583 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘(𝑀 + (𝑁 − 𝑀))) − 2)) |
9 | nn0cn 12512 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
10 | nn0cn 12512 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ) | |
11 | 9, 10 | anim12ci 613 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
12 | 11 | 3adant3 1130 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
13 | pncan3 11498 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + (𝑁 − 𝑀)) = 𝑁) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (𝑀 + (𝑁 − 𝑀)) = 𝑁) |
15 | 14 | eqcomd 2734 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → 𝑁 = (𝑀 + (𝑁 − 𝑀))) |
16 | 15 | fveq2d 6901 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (FermatNo‘𝑁) = (FermatNo‘(𝑀 + (𝑁 − 𝑀)))) |
17 | 16 | oveq1d 7435 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → ((FermatNo‘𝑁) − 2) = ((FermatNo‘(𝑀 + (𝑁 − 𝑀))) − 2)) |
18 | 8, 17 | breqtrrd 5176 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 ℂcc 11136 + caddc 11141 < clt 11278 − cmin 11474 ℕcn 12242 2c2 12297 ℕ0cn0 12502 ℤcz 12588 ∥ cdvds 16230 FermatNocfmtno 46867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-fz 13517 df-fzo 13660 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-clim 15464 df-prod 15882 df-dvds 16231 df-fmtno 46868 |
This theorem is referenced by: goldbachthlem2 46886 |
Copyright terms: Public domain | W3C validator |