Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem2 Structured version   Visualization version   GIF version

Theorem knoppndvlem2 34693
Description: Lemma for knoppndv 34714. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem2.n (𝜑𝑁 ∈ ℕ)
knoppndvlem2.i (𝜑𝐼 ∈ ℤ)
knoppndvlem2.j (𝜑𝐽 ∈ ℤ)
knoppndvlem2.m (𝜑𝑀 ∈ ℤ)
knoppndvlem2.1 (𝜑𝐽 < 𝐼)
Assertion
Ref Expression
knoppndvlem2 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ)

Proof of Theorem knoppndvlem2
StepHypRef Expression
1 2cnd 12051 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
2 knoppndvlem2.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
3 nnz 12342 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
42, 3syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
54zcnd 12427 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
61, 5mulcld 10995 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
7 2ne0 12077 . . . . . . . 8 2 ≠ 0
87a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
9 0red 10978 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
10 1red 10976 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
114zred 12426 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
12 0lt1 11497 . . . . . . . . . . 11 0 < 1
1312a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 1)
14 nnge1 12001 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
152, 14syl 17 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝑁)
169, 10, 11, 13, 15ltletrd 11135 . . . . . . . . 9 (𝜑 → 0 < 𝑁)
179, 16ltned 11111 . . . . . . . 8 (𝜑 → 0 ≠ 𝑁)
1817necomd 2999 . . . . . . 7 (𝜑𝑁 ≠ 0)
191, 5, 8, 18mulne0d 11627 . . . . . 6 (𝜑 → (2 · 𝑁) ≠ 0)
20 knoppndvlem2.i . . . . . 6 (𝜑𝐼 ∈ ℤ)
216, 19, 20expclzd 13869 . . . . 5 (𝜑 → ((2 · 𝑁)↑𝐼) ∈ ℂ)
22 knoppndvlem2.j . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
2322znegcld 12428 . . . . . . 7 (𝜑 → -𝐽 ∈ ℤ)
246, 19, 23expclzd 13869 . . . . . 6 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
2524, 1, 8divcld 11751 . . . . 5 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
26 knoppndvlem2.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
2726zcnd 12427 . . . . 5 (𝜑𝑀 ∈ ℂ)
2821, 25, 27mulassd 10998 . . . 4 (𝜑 → ((((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
2928eqcomd 2744 . . 3 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀))
3021, 24, 1, 8divassd 11786 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) / 2) = (((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)))
3130eqcomd 2744 . . . . 5 (𝜑 → (((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) = ((((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) / 2))
326, 19jca 512 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0))
3320, 23jca 512 . . . . . . . . . 10 (𝜑 → (𝐼 ∈ ℤ ∧ -𝐽 ∈ ℤ))
3432, 33jca 512 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ (𝐼 ∈ ℤ ∧ -𝐽 ∈ ℤ)))
35 expaddz 13827 . . . . . . . . 9 ((((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ (𝐼 ∈ ℤ ∧ -𝐽 ∈ ℤ)) → ((2 · 𝑁)↑(𝐼 + -𝐽)) = (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)))
3634, 35syl 17 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑(𝐼 + -𝐽)) = (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)))
3736eqcomd 2744 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) = ((2 · 𝑁)↑(𝐼 + -𝐽)))
3820zcnd 12427 . . . . . . . . 9 (𝜑𝐼 ∈ ℂ)
3922zcnd 12427 . . . . . . . . 9 (𝜑𝐽 ∈ ℂ)
4038, 39negsubd 11338 . . . . . . . 8 (𝜑 → (𝐼 + -𝐽) = (𝐼𝐽))
4140oveq2d 7291 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑(𝐼 + -𝐽)) = ((2 · 𝑁)↑(𝐼𝐽)))
42 knoppndvlem2.1 . . . . . . . . . 10 (𝜑𝐽 < 𝐼)
4322, 20jca 512 . . . . . . . . . . 11 (𝜑 → (𝐽 ∈ ℤ ∧ 𝐼 ∈ ℤ))
44 znnsub 12366 . . . . . . . . . . 11 ((𝐽 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐽 < 𝐼 ↔ (𝐼𝐽) ∈ ℕ))
4543, 44syl 17 . . . . . . . . . 10 (𝜑 → (𝐽 < 𝐼 ↔ (𝐼𝐽) ∈ ℕ))
4642, 45mpbid 231 . . . . . . . . 9 (𝜑 → (𝐼𝐽) ∈ ℕ)
476, 46jca 512 . . . . . . . 8 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (𝐼𝐽) ∈ ℕ))
48 expm1t 13811 . . . . . . . 8 (((2 · 𝑁) ∈ ℂ ∧ (𝐼𝐽) ∈ ℕ) → ((2 · 𝑁)↑(𝐼𝐽)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)))
4947, 48syl 17 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑(𝐼𝐽)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)))
5037, 41, 493eqtrd 2782 . . . . . 6 (𝜑 → (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)))
5150oveq1d 7290 . . . . 5 (𝜑 → ((((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) / 2) = ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)) / 2))
5220, 22jca 512 . . . . . . . . . . . 12 (𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ))
53 zsubcl 12362 . . . . . . . . . . . 12 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼𝐽) ∈ ℤ)
5452, 53syl 17 . . . . . . . . . . 11 (𝜑 → (𝐼𝐽) ∈ ℤ)
55 peano2zm 12363 . . . . . . . . . . 11 ((𝐼𝐽) ∈ ℤ → ((𝐼𝐽) − 1) ∈ ℤ)
5654, 55syl 17 . . . . . . . . . 10 (𝜑 → ((𝐼𝐽) − 1) ∈ ℤ)
5722zred 12426 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ℝ)
5820zred 12426 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℝ)
5957, 58posdifd 11562 . . . . . . . . . . . 12 (𝜑 → (𝐽 < 𝐼 ↔ 0 < (𝐼𝐽)))
6042, 59mpbid 231 . . . . . . . . . . 11 (𝜑 → 0 < (𝐼𝐽))
61 0zd 12331 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℤ)
6261, 54jca 512 . . . . . . . . . . . 12 (𝜑 → (0 ∈ ℤ ∧ (𝐼𝐽) ∈ ℤ))
63 zltlem1 12373 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (𝐼𝐽) ∈ ℤ) → (0 < (𝐼𝐽) ↔ 0 ≤ ((𝐼𝐽) − 1)))
6462, 63syl 17 . . . . . . . . . . 11 (𝜑 → (0 < (𝐼𝐽) ↔ 0 ≤ ((𝐼𝐽) − 1)))
6560, 64mpbid 231 . . . . . . . . . 10 (𝜑 → 0 ≤ ((𝐼𝐽) − 1))
6656, 65jca 512 . . . . . . . . 9 (𝜑 → (((𝐼𝐽) − 1) ∈ ℤ ∧ 0 ≤ ((𝐼𝐽) − 1)))
67 elnn0z 12332 . . . . . . . . 9 (((𝐼𝐽) − 1) ∈ ℕ0 ↔ (((𝐼𝐽) − 1) ∈ ℤ ∧ 0 ≤ ((𝐼𝐽) − 1)))
6866, 67sylibr 233 . . . . . . . 8 (𝜑 → ((𝐼𝐽) − 1) ∈ ℕ0)
696, 68expcld 13864 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑((𝐼𝐽) − 1)) ∈ ℂ)
7069, 6, 1, 8divassd 11786 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)) / 2) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · ((2 · 𝑁) / 2)))
715, 1, 8divcan3d 11756 . . . . . . 7 (𝜑 → ((2 · 𝑁) / 2) = 𝑁)
7271oveq2d 7291 . . . . . 6 (𝜑 → (((2 · 𝑁)↑((𝐼𝐽) − 1)) · ((2 · 𝑁) / 2)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁))
7370, 72eqtrd 2778 . . . . 5 (𝜑 → ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)) / 2) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁))
7431, 51, 733eqtrd 2782 . . . 4 (𝜑 → (((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁))
7574oveq1d 7290 . . 3 (𝜑 → ((((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) · 𝑀))
7629, 75eqtrd 2778 . 2 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) · 𝑀))
77 2z 12352 . . . . . . . . 9 2 ∈ ℤ
7877a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
7978, 4jca 512 . . . . . . 7 (𝜑 → (2 ∈ ℤ ∧ 𝑁 ∈ ℤ))
80 zmulcl 12369 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
8179, 80syl 17 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℤ)
8281, 68jca 512 . . . . 5 (𝜑 → ((2 · 𝑁) ∈ ℤ ∧ ((𝐼𝐽) − 1) ∈ ℕ0))
83 zexpcl 13797 . . . . 5 (((2 · 𝑁) ∈ ℤ ∧ ((𝐼𝐽) − 1) ∈ ℕ0) → ((2 · 𝑁)↑((𝐼𝐽) − 1)) ∈ ℤ)
8482, 83syl 17 . . . 4 (𝜑 → ((2 · 𝑁)↑((𝐼𝐽) − 1)) ∈ ℤ)
8584, 4zmulcld 12432 . . 3 (𝜑 → (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) ∈ ℤ)
8685, 26zmulcld 12432 . 2 (𝜑 → ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) · 𝑀) ∈ ℤ)
8776, 86eqeltrd 2839 1 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cexp 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-exp 13783
This theorem is referenced by:  knoppndvlem6  34697
  Copyright terms: Public domain W3C validator