Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem2 Structured version   Visualization version   GIF version

Theorem knoppndvlem2 36514
Description: Lemma for knoppndv 36535. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem2.n (𝜑𝑁 ∈ ℕ)
knoppndvlem2.i (𝜑𝐼 ∈ ℤ)
knoppndvlem2.j (𝜑𝐽 ∈ ℤ)
knoppndvlem2.m (𝜑𝑀 ∈ ℤ)
knoppndvlem2.1 (𝜑𝐽 < 𝐼)
Assertion
Ref Expression
knoppndvlem2 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ)

Proof of Theorem knoppndvlem2
StepHypRef Expression
1 2cnd 12344 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
2 knoppndvlem2.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
3 nnz 12634 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
42, 3syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
54zcnd 12723 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
61, 5mulcld 11281 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
7 2ne0 12370 . . . . . . . 8 2 ≠ 0
87a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
9 0red 11264 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
10 1red 11262 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
114zred 12722 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
12 0lt1 11785 . . . . . . . . . . 11 0 < 1
1312a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 1)
14 nnge1 12294 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
152, 14syl 17 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝑁)
169, 10, 11, 13, 15ltletrd 11421 . . . . . . . . 9 (𝜑 → 0 < 𝑁)
179, 16ltned 11397 . . . . . . . 8 (𝜑 → 0 ≠ 𝑁)
1817necomd 2996 . . . . . . 7 (𝜑𝑁 ≠ 0)
191, 5, 8, 18mulne0d 11915 . . . . . 6 (𝜑 → (2 · 𝑁) ≠ 0)
20 knoppndvlem2.i . . . . . 6 (𝜑𝐼 ∈ ℤ)
216, 19, 20expclzd 14191 . . . . 5 (𝜑 → ((2 · 𝑁)↑𝐼) ∈ ℂ)
22 knoppndvlem2.j . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
2322znegcld 12724 . . . . . . 7 (𝜑 → -𝐽 ∈ ℤ)
246, 19, 23expclzd 14191 . . . . . 6 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
2524, 1, 8divcld 12043 . . . . 5 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
26 knoppndvlem2.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
2726zcnd 12723 . . . . 5 (𝜑𝑀 ∈ ℂ)
2821, 25, 27mulassd 11284 . . . 4 (𝜑 → ((((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
2928eqcomd 2743 . . 3 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀))
3021, 24, 1, 8divassd 12078 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) / 2) = (((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)))
3130eqcomd 2743 . . . . 5 (𝜑 → (((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) = ((((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) / 2))
326, 19jca 511 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0))
3320, 23jca 511 . . . . . . . . . 10 (𝜑 → (𝐼 ∈ ℤ ∧ -𝐽 ∈ ℤ))
3432, 33jca 511 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ (𝐼 ∈ ℤ ∧ -𝐽 ∈ ℤ)))
35 expaddz 14147 . . . . . . . . 9 ((((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ (𝐼 ∈ ℤ ∧ -𝐽 ∈ ℤ)) → ((2 · 𝑁)↑(𝐼 + -𝐽)) = (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)))
3634, 35syl 17 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑(𝐼 + -𝐽)) = (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)))
3736eqcomd 2743 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) = ((2 · 𝑁)↑(𝐼 + -𝐽)))
3820zcnd 12723 . . . . . . . . 9 (𝜑𝐼 ∈ ℂ)
3922zcnd 12723 . . . . . . . . 9 (𝜑𝐽 ∈ ℂ)
4038, 39negsubd 11626 . . . . . . . 8 (𝜑 → (𝐼 + -𝐽) = (𝐼𝐽))
4140oveq2d 7447 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑(𝐼 + -𝐽)) = ((2 · 𝑁)↑(𝐼𝐽)))
42 knoppndvlem2.1 . . . . . . . . . 10 (𝜑𝐽 < 𝐼)
4322, 20jca 511 . . . . . . . . . . 11 (𝜑 → (𝐽 ∈ ℤ ∧ 𝐼 ∈ ℤ))
44 znnsub 12663 . . . . . . . . . . 11 ((𝐽 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐽 < 𝐼 ↔ (𝐼𝐽) ∈ ℕ))
4543, 44syl 17 . . . . . . . . . 10 (𝜑 → (𝐽 < 𝐼 ↔ (𝐼𝐽) ∈ ℕ))
4642, 45mpbid 232 . . . . . . . . 9 (𝜑 → (𝐼𝐽) ∈ ℕ)
476, 46jca 511 . . . . . . . 8 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (𝐼𝐽) ∈ ℕ))
48 expm1t 14131 . . . . . . . 8 (((2 · 𝑁) ∈ ℂ ∧ (𝐼𝐽) ∈ ℕ) → ((2 · 𝑁)↑(𝐼𝐽)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)))
4947, 48syl 17 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑(𝐼𝐽)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)))
5037, 41, 493eqtrd 2781 . . . . . 6 (𝜑 → (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)))
5150oveq1d 7446 . . . . 5 (𝜑 → ((((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) / 2) = ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)) / 2))
5220, 22jca 511 . . . . . . . . . . . 12 (𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ))
53 zsubcl 12659 . . . . . . . . . . . 12 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼𝐽) ∈ ℤ)
5452, 53syl 17 . . . . . . . . . . 11 (𝜑 → (𝐼𝐽) ∈ ℤ)
55 peano2zm 12660 . . . . . . . . . . 11 ((𝐼𝐽) ∈ ℤ → ((𝐼𝐽) − 1) ∈ ℤ)
5654, 55syl 17 . . . . . . . . . 10 (𝜑 → ((𝐼𝐽) − 1) ∈ ℤ)
5722zred 12722 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ℝ)
5820zred 12722 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℝ)
5957, 58posdifd 11850 . . . . . . . . . . . 12 (𝜑 → (𝐽 < 𝐼 ↔ 0 < (𝐼𝐽)))
6042, 59mpbid 232 . . . . . . . . . . 11 (𝜑 → 0 < (𝐼𝐽))
61 0zd 12625 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℤ)
6261, 54jca 511 . . . . . . . . . . . 12 (𝜑 → (0 ∈ ℤ ∧ (𝐼𝐽) ∈ ℤ))
63 zltlem1 12670 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (𝐼𝐽) ∈ ℤ) → (0 < (𝐼𝐽) ↔ 0 ≤ ((𝐼𝐽) − 1)))
6462, 63syl 17 . . . . . . . . . . 11 (𝜑 → (0 < (𝐼𝐽) ↔ 0 ≤ ((𝐼𝐽) − 1)))
6560, 64mpbid 232 . . . . . . . . . 10 (𝜑 → 0 ≤ ((𝐼𝐽) − 1))
6656, 65jca 511 . . . . . . . . 9 (𝜑 → (((𝐼𝐽) − 1) ∈ ℤ ∧ 0 ≤ ((𝐼𝐽) − 1)))
67 elnn0z 12626 . . . . . . . . 9 (((𝐼𝐽) − 1) ∈ ℕ0 ↔ (((𝐼𝐽) − 1) ∈ ℤ ∧ 0 ≤ ((𝐼𝐽) − 1)))
6866, 67sylibr 234 . . . . . . . 8 (𝜑 → ((𝐼𝐽) − 1) ∈ ℕ0)
696, 68expcld 14186 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑((𝐼𝐽) − 1)) ∈ ℂ)
7069, 6, 1, 8divassd 12078 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)) / 2) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · ((2 · 𝑁) / 2)))
715, 1, 8divcan3d 12048 . . . . . . 7 (𝜑 → ((2 · 𝑁) / 2) = 𝑁)
7271oveq2d 7447 . . . . . 6 (𝜑 → (((2 · 𝑁)↑((𝐼𝐽) − 1)) · ((2 · 𝑁) / 2)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁))
7370, 72eqtrd 2777 . . . . 5 (𝜑 → ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)) / 2) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁))
7431, 51, 733eqtrd 2781 . . . 4 (𝜑 → (((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁))
7574oveq1d 7446 . . 3 (𝜑 → ((((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) · 𝑀))
7629, 75eqtrd 2777 . 2 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) · 𝑀))
77 2z 12649 . . . . . . . . 9 2 ∈ ℤ
7877a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
7978, 4jca 511 . . . . . . 7 (𝜑 → (2 ∈ ℤ ∧ 𝑁 ∈ ℤ))
80 zmulcl 12666 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
8179, 80syl 17 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℤ)
8281, 68jca 511 . . . . 5 (𝜑 → ((2 · 𝑁) ∈ ℤ ∧ ((𝐼𝐽) − 1) ∈ ℕ0))
83 zexpcl 14117 . . . . 5 (((2 · 𝑁) ∈ ℤ ∧ ((𝐼𝐽) − 1) ∈ ℕ0) → ((2 · 𝑁)↑((𝐼𝐽) − 1)) ∈ ℤ)
8482, 83syl 17 . . . 4 (𝜑 → ((2 · 𝑁)↑((𝐼𝐽) − 1)) ∈ ℤ)
8584, 4zmulcld 12728 . . 3 (𝜑 → (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) ∈ ℤ)
8685, 26zmulcld 12728 . 2 (𝜑 → ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) · 𝑀) ∈ ℤ)
8776, 86eqeltrd 2841 1 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  cexp 14102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-exp 14103
This theorem is referenced by:  knoppndvlem6  36518
  Copyright terms: Public domain W3C validator