Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem2 Structured version   Visualization version   GIF version

Theorem knoppndvlem2 34620
Description: Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem2.n (𝜑𝑁 ∈ ℕ)
knoppndvlem2.i (𝜑𝐼 ∈ ℤ)
knoppndvlem2.j (𝜑𝐽 ∈ ℤ)
knoppndvlem2.m (𝜑𝑀 ∈ ℤ)
knoppndvlem2.1 (𝜑𝐽 < 𝐼)
Assertion
Ref Expression
knoppndvlem2 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ)

Proof of Theorem knoppndvlem2
StepHypRef Expression
1 2cnd 11981 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
2 knoppndvlem2.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
3 nnz 12272 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
42, 3syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
54zcnd 12356 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
61, 5mulcld 10926 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
7 2ne0 12007 . . . . . . . 8 2 ≠ 0
87a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
9 0red 10909 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
10 1red 10907 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
114zred 12355 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
12 0lt1 11427 . . . . . . . . . . 11 0 < 1
1312a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 1)
14 nnge1 11931 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
152, 14syl 17 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝑁)
169, 10, 11, 13, 15ltletrd 11065 . . . . . . . . 9 (𝜑 → 0 < 𝑁)
179, 16ltned 11041 . . . . . . . 8 (𝜑 → 0 ≠ 𝑁)
1817necomd 2998 . . . . . . 7 (𝜑𝑁 ≠ 0)
191, 5, 8, 18mulne0d 11557 . . . . . 6 (𝜑 → (2 · 𝑁) ≠ 0)
20 knoppndvlem2.i . . . . . 6 (𝜑𝐼 ∈ ℤ)
216, 19, 20expclzd 13797 . . . . 5 (𝜑 → ((2 · 𝑁)↑𝐼) ∈ ℂ)
22 knoppndvlem2.j . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
2322znegcld 12357 . . . . . . 7 (𝜑 → -𝐽 ∈ ℤ)
246, 19, 23expclzd 13797 . . . . . 6 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
2524, 1, 8divcld 11681 . . . . 5 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
26 knoppndvlem2.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
2726zcnd 12356 . . . . 5 (𝜑𝑀 ∈ ℂ)
2821, 25, 27mulassd 10929 . . . 4 (𝜑 → ((((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
2928eqcomd 2744 . . 3 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀))
3021, 24, 1, 8divassd 11716 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) / 2) = (((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)))
3130eqcomd 2744 . . . . 5 (𝜑 → (((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) = ((((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) / 2))
326, 19jca 511 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0))
3320, 23jca 511 . . . . . . . . . 10 (𝜑 → (𝐼 ∈ ℤ ∧ -𝐽 ∈ ℤ))
3432, 33jca 511 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ (𝐼 ∈ ℤ ∧ -𝐽 ∈ ℤ)))
35 expaddz 13755 . . . . . . . . 9 ((((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ (𝐼 ∈ ℤ ∧ -𝐽 ∈ ℤ)) → ((2 · 𝑁)↑(𝐼 + -𝐽)) = (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)))
3634, 35syl 17 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑(𝐼 + -𝐽)) = (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)))
3736eqcomd 2744 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) = ((2 · 𝑁)↑(𝐼 + -𝐽)))
3820zcnd 12356 . . . . . . . . 9 (𝜑𝐼 ∈ ℂ)
3922zcnd 12356 . . . . . . . . 9 (𝜑𝐽 ∈ ℂ)
4038, 39negsubd 11268 . . . . . . . 8 (𝜑 → (𝐼 + -𝐽) = (𝐼𝐽))
4140oveq2d 7271 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑(𝐼 + -𝐽)) = ((2 · 𝑁)↑(𝐼𝐽)))
42 knoppndvlem2.1 . . . . . . . . . 10 (𝜑𝐽 < 𝐼)
4322, 20jca 511 . . . . . . . . . . 11 (𝜑 → (𝐽 ∈ ℤ ∧ 𝐼 ∈ ℤ))
44 znnsub 12296 . . . . . . . . . . 11 ((𝐽 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐽 < 𝐼 ↔ (𝐼𝐽) ∈ ℕ))
4543, 44syl 17 . . . . . . . . . 10 (𝜑 → (𝐽 < 𝐼 ↔ (𝐼𝐽) ∈ ℕ))
4642, 45mpbid 231 . . . . . . . . 9 (𝜑 → (𝐼𝐽) ∈ ℕ)
476, 46jca 511 . . . . . . . 8 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (𝐼𝐽) ∈ ℕ))
48 expm1t 13739 . . . . . . . 8 (((2 · 𝑁) ∈ ℂ ∧ (𝐼𝐽) ∈ ℕ) → ((2 · 𝑁)↑(𝐼𝐽)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)))
4947, 48syl 17 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑(𝐼𝐽)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)))
5037, 41, 493eqtrd 2782 . . . . . 6 (𝜑 → (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)))
5150oveq1d 7270 . . . . 5 (𝜑 → ((((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) / 2) = ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)) / 2))
5220, 22jca 511 . . . . . . . . . . . 12 (𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ))
53 zsubcl 12292 . . . . . . . . . . . 12 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼𝐽) ∈ ℤ)
5452, 53syl 17 . . . . . . . . . . 11 (𝜑 → (𝐼𝐽) ∈ ℤ)
55 peano2zm 12293 . . . . . . . . . . 11 ((𝐼𝐽) ∈ ℤ → ((𝐼𝐽) − 1) ∈ ℤ)
5654, 55syl 17 . . . . . . . . . 10 (𝜑 → ((𝐼𝐽) − 1) ∈ ℤ)
5722zred 12355 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ℝ)
5820zred 12355 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℝ)
5957, 58posdifd 11492 . . . . . . . . . . . 12 (𝜑 → (𝐽 < 𝐼 ↔ 0 < (𝐼𝐽)))
6042, 59mpbid 231 . . . . . . . . . . 11 (𝜑 → 0 < (𝐼𝐽))
61 0zd 12261 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℤ)
6261, 54jca 511 . . . . . . . . . . . 12 (𝜑 → (0 ∈ ℤ ∧ (𝐼𝐽) ∈ ℤ))
63 zltlem1 12303 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (𝐼𝐽) ∈ ℤ) → (0 < (𝐼𝐽) ↔ 0 ≤ ((𝐼𝐽) − 1)))
6462, 63syl 17 . . . . . . . . . . 11 (𝜑 → (0 < (𝐼𝐽) ↔ 0 ≤ ((𝐼𝐽) − 1)))
6560, 64mpbid 231 . . . . . . . . . 10 (𝜑 → 0 ≤ ((𝐼𝐽) − 1))
6656, 65jca 511 . . . . . . . . 9 (𝜑 → (((𝐼𝐽) − 1) ∈ ℤ ∧ 0 ≤ ((𝐼𝐽) − 1)))
67 elnn0z 12262 . . . . . . . . 9 (((𝐼𝐽) − 1) ∈ ℕ0 ↔ (((𝐼𝐽) − 1) ∈ ℤ ∧ 0 ≤ ((𝐼𝐽) − 1)))
6866, 67sylibr 233 . . . . . . . 8 (𝜑 → ((𝐼𝐽) − 1) ∈ ℕ0)
696, 68expcld 13792 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑((𝐼𝐽) − 1)) ∈ ℂ)
7069, 6, 1, 8divassd 11716 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)) / 2) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · ((2 · 𝑁) / 2)))
715, 1, 8divcan3d 11686 . . . . . . 7 (𝜑 → ((2 · 𝑁) / 2) = 𝑁)
7271oveq2d 7271 . . . . . 6 (𝜑 → (((2 · 𝑁)↑((𝐼𝐽) − 1)) · ((2 · 𝑁) / 2)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁))
7370, 72eqtrd 2778 . . . . 5 (𝜑 → ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)) / 2) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁))
7431, 51, 733eqtrd 2782 . . . 4 (𝜑 → (((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁))
7574oveq1d 7270 . . 3 (𝜑 → ((((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) · 𝑀))
7629, 75eqtrd 2778 . 2 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) · 𝑀))
77 2z 12282 . . . . . . . . 9 2 ∈ ℤ
7877a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
7978, 4jca 511 . . . . . . 7 (𝜑 → (2 ∈ ℤ ∧ 𝑁 ∈ ℤ))
80 zmulcl 12299 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
8179, 80syl 17 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℤ)
8281, 68jca 511 . . . . 5 (𝜑 → ((2 · 𝑁) ∈ ℤ ∧ ((𝐼𝐽) − 1) ∈ ℕ0))
83 zexpcl 13725 . . . . 5 (((2 · 𝑁) ∈ ℤ ∧ ((𝐼𝐽) − 1) ∈ ℕ0) → ((2 · 𝑁)↑((𝐼𝐽) − 1)) ∈ ℤ)
8482, 83syl 17 . . . 4 (𝜑 → ((2 · 𝑁)↑((𝐼𝐽) − 1)) ∈ ℤ)
8584, 4zmulcld 12361 . . 3 (𝜑 → (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) ∈ ℤ)
8685, 26zmulcld 12361 . 2 (𝜑 → ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) · 𝑀) ∈ ℤ)
8776, 86eqeltrd 2839 1 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by:  knoppndvlem6  34624
  Copyright terms: Public domain W3C validator