Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem2 Structured version   Visualization version   GIF version

Theorem knoppndvlem2 34908
Description: Lemma for knoppndv 34929. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem2.n (𝜑𝑁 ∈ ℕ)
knoppndvlem2.i (𝜑𝐼 ∈ ℤ)
knoppndvlem2.j (𝜑𝐽 ∈ ℤ)
knoppndvlem2.m (𝜑𝑀 ∈ ℤ)
knoppndvlem2.1 (𝜑𝐽 < 𝐼)
Assertion
Ref Expression
knoppndvlem2 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ)

Proof of Theorem knoppndvlem2
StepHypRef Expression
1 2cnd 12189 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
2 knoppndvlem2.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
3 nnz 12478 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
42, 3syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
54zcnd 12566 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
61, 5mulcld 11133 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
7 2ne0 12215 . . . . . . . 8 2 ≠ 0
87a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
9 0red 11116 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
10 1red 11114 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
114zred 12565 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
12 0lt1 11635 . . . . . . . . . . 11 0 < 1
1312a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 1)
14 nnge1 12139 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
152, 14syl 17 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝑁)
169, 10, 11, 13, 15ltletrd 11273 . . . . . . . . 9 (𝜑 → 0 < 𝑁)
179, 16ltned 11249 . . . . . . . 8 (𝜑 → 0 ≠ 𝑁)
1817necomd 2997 . . . . . . 7 (𝜑𝑁 ≠ 0)
191, 5, 8, 18mulne0d 11765 . . . . . 6 (𝜑 → (2 · 𝑁) ≠ 0)
20 knoppndvlem2.i . . . . . 6 (𝜑𝐼 ∈ ℤ)
216, 19, 20expclzd 14010 . . . . 5 (𝜑 → ((2 · 𝑁)↑𝐼) ∈ ℂ)
22 knoppndvlem2.j . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
2322znegcld 12567 . . . . . . 7 (𝜑 → -𝐽 ∈ ℤ)
246, 19, 23expclzd 14010 . . . . . 6 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
2524, 1, 8divcld 11889 . . . . 5 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
26 knoppndvlem2.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
2726zcnd 12566 . . . . 5 (𝜑𝑀 ∈ ℂ)
2821, 25, 27mulassd 11136 . . . 4 (𝜑 → ((((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
2928eqcomd 2742 . . 3 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀))
3021, 24, 1, 8divassd 11924 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) / 2) = (((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)))
3130eqcomd 2742 . . . . 5 (𝜑 → (((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) = ((((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) / 2))
326, 19jca 512 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0))
3320, 23jca 512 . . . . . . . . . 10 (𝜑 → (𝐼 ∈ ℤ ∧ -𝐽 ∈ ℤ))
3432, 33jca 512 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ (𝐼 ∈ ℤ ∧ -𝐽 ∈ ℤ)))
35 expaddz 13966 . . . . . . . . 9 ((((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ (𝐼 ∈ ℤ ∧ -𝐽 ∈ ℤ)) → ((2 · 𝑁)↑(𝐼 + -𝐽)) = (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)))
3634, 35syl 17 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑(𝐼 + -𝐽)) = (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)))
3736eqcomd 2742 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) = ((2 · 𝑁)↑(𝐼 + -𝐽)))
3820zcnd 12566 . . . . . . . . 9 (𝜑𝐼 ∈ ℂ)
3922zcnd 12566 . . . . . . . . 9 (𝜑𝐽 ∈ ℂ)
4038, 39negsubd 11476 . . . . . . . 8 (𝜑 → (𝐼 + -𝐽) = (𝐼𝐽))
4140oveq2d 7367 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑(𝐼 + -𝐽)) = ((2 · 𝑁)↑(𝐼𝐽)))
42 knoppndvlem2.1 . . . . . . . . . 10 (𝜑𝐽 < 𝐼)
4322, 20jca 512 . . . . . . . . . . 11 (𝜑 → (𝐽 ∈ ℤ ∧ 𝐼 ∈ ℤ))
44 znnsub 12507 . . . . . . . . . . 11 ((𝐽 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐽 < 𝐼 ↔ (𝐼𝐽) ∈ ℕ))
4543, 44syl 17 . . . . . . . . . 10 (𝜑 → (𝐽 < 𝐼 ↔ (𝐼𝐽) ∈ ℕ))
4642, 45mpbid 231 . . . . . . . . 9 (𝜑 → (𝐼𝐽) ∈ ℕ)
476, 46jca 512 . . . . . . . 8 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (𝐼𝐽) ∈ ℕ))
48 expm1t 13950 . . . . . . . 8 (((2 · 𝑁) ∈ ℂ ∧ (𝐼𝐽) ∈ ℕ) → ((2 · 𝑁)↑(𝐼𝐽)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)))
4947, 48syl 17 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑(𝐼𝐽)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)))
5037, 41, 493eqtrd 2780 . . . . . 6 (𝜑 → (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)))
5150oveq1d 7366 . . . . 5 (𝜑 → ((((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) / 2) = ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)) / 2))
5220, 22jca 512 . . . . . . . . . . . 12 (𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ))
53 zsubcl 12503 . . . . . . . . . . . 12 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼𝐽) ∈ ℤ)
5452, 53syl 17 . . . . . . . . . . 11 (𝜑 → (𝐼𝐽) ∈ ℤ)
55 peano2zm 12504 . . . . . . . . . . 11 ((𝐼𝐽) ∈ ℤ → ((𝐼𝐽) − 1) ∈ ℤ)
5654, 55syl 17 . . . . . . . . . 10 (𝜑 → ((𝐼𝐽) − 1) ∈ ℤ)
5722zred 12565 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ℝ)
5820zred 12565 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℝ)
5957, 58posdifd 11700 . . . . . . . . . . . 12 (𝜑 → (𝐽 < 𝐼 ↔ 0 < (𝐼𝐽)))
6042, 59mpbid 231 . . . . . . . . . . 11 (𝜑 → 0 < (𝐼𝐽))
61 0zd 12469 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℤ)
6261, 54jca 512 . . . . . . . . . . . 12 (𝜑 → (0 ∈ ℤ ∧ (𝐼𝐽) ∈ ℤ))
63 zltlem1 12514 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (𝐼𝐽) ∈ ℤ) → (0 < (𝐼𝐽) ↔ 0 ≤ ((𝐼𝐽) − 1)))
6462, 63syl 17 . . . . . . . . . . 11 (𝜑 → (0 < (𝐼𝐽) ↔ 0 ≤ ((𝐼𝐽) − 1)))
6560, 64mpbid 231 . . . . . . . . . 10 (𝜑 → 0 ≤ ((𝐼𝐽) − 1))
6656, 65jca 512 . . . . . . . . 9 (𝜑 → (((𝐼𝐽) − 1) ∈ ℤ ∧ 0 ≤ ((𝐼𝐽) − 1)))
67 elnn0z 12470 . . . . . . . . 9 (((𝐼𝐽) − 1) ∈ ℕ0 ↔ (((𝐼𝐽) − 1) ∈ ℤ ∧ 0 ≤ ((𝐼𝐽) − 1)))
6866, 67sylibr 233 . . . . . . . 8 (𝜑 → ((𝐼𝐽) − 1) ∈ ℕ0)
696, 68expcld 14005 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑((𝐼𝐽) − 1)) ∈ ℂ)
7069, 6, 1, 8divassd 11924 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)) / 2) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · ((2 · 𝑁) / 2)))
715, 1, 8divcan3d 11894 . . . . . . 7 (𝜑 → ((2 · 𝑁) / 2) = 𝑁)
7271oveq2d 7367 . . . . . 6 (𝜑 → (((2 · 𝑁)↑((𝐼𝐽) − 1)) · ((2 · 𝑁) / 2)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁))
7370, 72eqtrd 2776 . . . . 5 (𝜑 → ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)) / 2) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁))
7431, 51, 733eqtrd 2780 . . . 4 (𝜑 → (((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁))
7574oveq1d 7366 . . 3 (𝜑 → ((((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) · 𝑀))
7629, 75eqtrd 2776 . 2 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) · 𝑀))
77 2z 12493 . . . . . . . . 9 2 ∈ ℤ
7877a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
7978, 4jca 512 . . . . . . 7 (𝜑 → (2 ∈ ℤ ∧ 𝑁 ∈ ℤ))
80 zmulcl 12510 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
8179, 80syl 17 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℤ)
8281, 68jca 512 . . . . 5 (𝜑 → ((2 · 𝑁) ∈ ℤ ∧ ((𝐼𝐽) − 1) ∈ ℕ0))
83 zexpcl 13936 . . . . 5 (((2 · 𝑁) ∈ ℤ ∧ ((𝐼𝐽) − 1) ∈ ℕ0) → ((2 · 𝑁)↑((𝐼𝐽) − 1)) ∈ ℤ)
8482, 83syl 17 . . . 4 (𝜑 → ((2 · 𝑁)↑((𝐼𝐽) − 1)) ∈ ℤ)
8584, 4zmulcld 12571 . . 3 (𝜑 → (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) ∈ ℤ)
8685, 26zmulcld 12571 . 2 (𝜑 → ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) · 𝑀) ∈ ℤ)
8776, 86eqeltrd 2838 1 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2941   class class class wbr 5103  (class class class)co 7351  cc 11007  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11147  cle 11148  cmin 11343  -cneg 11344   / cdiv 11770  cn 12111  2c2 12166  0cn0 12371  cz 12457  cexp 13921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-er 8606  df-en 8842  df-dom 8843  df-sdom 8844  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-div 11771  df-nn 12112  df-2 12174  df-n0 12372  df-z 12458  df-uz 12722  df-seq 13861  df-exp 13922
This theorem is referenced by:  knoppndvlem6  34912
  Copyright terms: Public domain W3C validator