Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem2 Structured version   Visualization version   GIF version

Theorem knoppndvlem2 36501
Description: Lemma for knoppndv 36522. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem2.n (𝜑𝑁 ∈ ℕ)
knoppndvlem2.i (𝜑𝐼 ∈ ℤ)
knoppndvlem2.j (𝜑𝐽 ∈ ℤ)
knoppndvlem2.m (𝜑𝑀 ∈ ℤ)
knoppndvlem2.1 (𝜑𝐽 < 𝐼)
Assertion
Ref Expression
knoppndvlem2 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ)

Proof of Theorem knoppndvlem2
StepHypRef Expression
1 2cnd 12264 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
2 knoppndvlem2.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
3 nnz 12550 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
42, 3syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
54zcnd 12639 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
61, 5mulcld 11194 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
7 2ne0 12290 . . . . . . . 8 2 ≠ 0
87a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
9 0red 11177 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
10 1red 11175 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
114zred 12638 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
12 0lt1 11700 . . . . . . . . . . 11 0 < 1
1312a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 1)
14 nnge1 12214 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
152, 14syl 17 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝑁)
169, 10, 11, 13, 15ltletrd 11334 . . . . . . . . 9 (𝜑 → 0 < 𝑁)
179, 16ltned 11310 . . . . . . . 8 (𝜑 → 0 ≠ 𝑁)
1817necomd 2980 . . . . . . 7 (𝜑𝑁 ≠ 0)
191, 5, 8, 18mulne0d 11830 . . . . . 6 (𝜑 → (2 · 𝑁) ≠ 0)
20 knoppndvlem2.i . . . . . 6 (𝜑𝐼 ∈ ℤ)
216, 19, 20expclzd 14116 . . . . 5 (𝜑 → ((2 · 𝑁)↑𝐼) ∈ ℂ)
22 knoppndvlem2.j . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
2322znegcld 12640 . . . . . . 7 (𝜑 → -𝐽 ∈ ℤ)
246, 19, 23expclzd 14116 . . . . . 6 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
2524, 1, 8divcld 11958 . . . . 5 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
26 knoppndvlem2.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
2726zcnd 12639 . . . . 5 (𝜑𝑀 ∈ ℂ)
2821, 25, 27mulassd 11197 . . . 4 (𝜑 → ((((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
2928eqcomd 2735 . . 3 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀))
3021, 24, 1, 8divassd 11993 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) / 2) = (((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)))
3130eqcomd 2735 . . . . 5 (𝜑 → (((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) = ((((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) / 2))
326, 19jca 511 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0))
3320, 23jca 511 . . . . . . . . . 10 (𝜑 → (𝐼 ∈ ℤ ∧ -𝐽 ∈ ℤ))
3432, 33jca 511 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ (𝐼 ∈ ℤ ∧ -𝐽 ∈ ℤ)))
35 expaddz 14071 . . . . . . . . 9 ((((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ (𝐼 ∈ ℤ ∧ -𝐽 ∈ ℤ)) → ((2 · 𝑁)↑(𝐼 + -𝐽)) = (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)))
3634, 35syl 17 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑(𝐼 + -𝐽)) = (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)))
3736eqcomd 2735 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) = ((2 · 𝑁)↑(𝐼 + -𝐽)))
3820zcnd 12639 . . . . . . . . 9 (𝜑𝐼 ∈ ℂ)
3922zcnd 12639 . . . . . . . . 9 (𝜑𝐽 ∈ ℂ)
4038, 39negsubd 11539 . . . . . . . 8 (𝜑 → (𝐼 + -𝐽) = (𝐼𝐽))
4140oveq2d 7403 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑(𝐼 + -𝐽)) = ((2 · 𝑁)↑(𝐼𝐽)))
42 knoppndvlem2.1 . . . . . . . . . 10 (𝜑𝐽 < 𝐼)
4322, 20jca 511 . . . . . . . . . . 11 (𝜑 → (𝐽 ∈ ℤ ∧ 𝐼 ∈ ℤ))
44 znnsub 12579 . . . . . . . . . . 11 ((𝐽 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐽 < 𝐼 ↔ (𝐼𝐽) ∈ ℕ))
4543, 44syl 17 . . . . . . . . . 10 (𝜑 → (𝐽 < 𝐼 ↔ (𝐼𝐽) ∈ ℕ))
4642, 45mpbid 232 . . . . . . . . 9 (𝜑 → (𝐼𝐽) ∈ ℕ)
476, 46jca 511 . . . . . . . 8 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (𝐼𝐽) ∈ ℕ))
48 expm1t 14055 . . . . . . . 8 (((2 · 𝑁) ∈ ℂ ∧ (𝐼𝐽) ∈ ℕ) → ((2 · 𝑁)↑(𝐼𝐽)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)))
4947, 48syl 17 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑(𝐼𝐽)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)))
5037, 41, 493eqtrd 2768 . . . . . 6 (𝜑 → (((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)))
5150oveq1d 7402 . . . . 5 (𝜑 → ((((2 · 𝑁)↑𝐼) · ((2 · 𝑁)↑-𝐽)) / 2) = ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)) / 2))
5220, 22jca 511 . . . . . . . . . . . 12 (𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ))
53 zsubcl 12575 . . . . . . . . . . . 12 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼𝐽) ∈ ℤ)
5452, 53syl 17 . . . . . . . . . . 11 (𝜑 → (𝐼𝐽) ∈ ℤ)
55 peano2zm 12576 . . . . . . . . . . 11 ((𝐼𝐽) ∈ ℤ → ((𝐼𝐽) − 1) ∈ ℤ)
5654, 55syl 17 . . . . . . . . . 10 (𝜑 → ((𝐼𝐽) − 1) ∈ ℤ)
5722zred 12638 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ℝ)
5820zred 12638 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℝ)
5957, 58posdifd 11765 . . . . . . . . . . . 12 (𝜑 → (𝐽 < 𝐼 ↔ 0 < (𝐼𝐽)))
6042, 59mpbid 232 . . . . . . . . . . 11 (𝜑 → 0 < (𝐼𝐽))
61 0zd 12541 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℤ)
6261, 54jca 511 . . . . . . . . . . . 12 (𝜑 → (0 ∈ ℤ ∧ (𝐼𝐽) ∈ ℤ))
63 zltlem1 12586 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (𝐼𝐽) ∈ ℤ) → (0 < (𝐼𝐽) ↔ 0 ≤ ((𝐼𝐽) − 1)))
6462, 63syl 17 . . . . . . . . . . 11 (𝜑 → (0 < (𝐼𝐽) ↔ 0 ≤ ((𝐼𝐽) − 1)))
6560, 64mpbid 232 . . . . . . . . . 10 (𝜑 → 0 ≤ ((𝐼𝐽) − 1))
6656, 65jca 511 . . . . . . . . 9 (𝜑 → (((𝐼𝐽) − 1) ∈ ℤ ∧ 0 ≤ ((𝐼𝐽) − 1)))
67 elnn0z 12542 . . . . . . . . 9 (((𝐼𝐽) − 1) ∈ ℕ0 ↔ (((𝐼𝐽) − 1) ∈ ℤ ∧ 0 ≤ ((𝐼𝐽) − 1)))
6866, 67sylibr 234 . . . . . . . 8 (𝜑 → ((𝐼𝐽) − 1) ∈ ℕ0)
696, 68expcld 14111 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑((𝐼𝐽) − 1)) ∈ ℂ)
7069, 6, 1, 8divassd 11993 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)) / 2) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · ((2 · 𝑁) / 2)))
715, 1, 8divcan3d 11963 . . . . . . 7 (𝜑 → ((2 · 𝑁) / 2) = 𝑁)
7271oveq2d 7403 . . . . . 6 (𝜑 → (((2 · 𝑁)↑((𝐼𝐽) − 1)) · ((2 · 𝑁) / 2)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁))
7370, 72eqtrd 2764 . . . . 5 (𝜑 → ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · (2 · 𝑁)) / 2) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁))
7431, 51, 733eqtrd 2768 . . . 4 (𝜑 → (((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) = (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁))
7574oveq1d 7402 . . 3 (𝜑 → ((((2 · 𝑁)↑𝐼) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) · 𝑀))
7629, 75eqtrd 2764 . 2 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) · 𝑀))
77 2z 12565 . . . . . . . . 9 2 ∈ ℤ
7877a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
7978, 4jca 511 . . . . . . 7 (𝜑 → (2 ∈ ℤ ∧ 𝑁 ∈ ℤ))
80 zmulcl 12582 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
8179, 80syl 17 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℤ)
8281, 68jca 511 . . . . 5 (𝜑 → ((2 · 𝑁) ∈ ℤ ∧ ((𝐼𝐽) − 1) ∈ ℕ0))
83 zexpcl 14041 . . . . 5 (((2 · 𝑁) ∈ ℤ ∧ ((𝐼𝐽) − 1) ∈ ℕ0) → ((2 · 𝑁)↑((𝐼𝐽) − 1)) ∈ ℤ)
8482, 83syl 17 . . . 4 (𝜑 → ((2 · 𝑁)↑((𝐼𝐽) − 1)) ∈ ℤ)
8584, 4zmulcld 12644 . . 3 (𝜑 → (((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) ∈ ℤ)
8685, 26zmulcld 12644 . 2 (𝜑 → ((((2 · 𝑁)↑((𝐼𝐽) − 1)) · 𝑁) · 𝑀) ∈ ℤ)
8776, 86eqeltrd 2828 1 (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-exp 14027
This theorem is referenced by:  knoppndvlem6  36505
  Copyright terms: Public domain W3C validator