![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abs2dif | Structured version Visualization version GIF version |
Description: Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
Ref | Expression |
---|---|
abs2dif | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subid1 10760 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) | |
2 | 1 | fveq2d 6549 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(𝐴 − 0)) = (abs‘𝐴)) |
3 | subid1 10760 | . . . 4 ⊢ (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵) | |
4 | 3 | fveq2d 6549 | . . 3 ⊢ (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵)) |
5 | 2, 4 | oveqan12d 7042 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) = ((abs‘𝐴) − (abs‘𝐵))) |
6 | 0cn 10486 | . . . 4 ⊢ 0 ∈ ℂ | |
7 | abs3dif 14529 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 0)))) | |
8 | 6, 7 | mp3an2 1441 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 0)))) |
9 | subcl 10738 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 − 0) ∈ ℂ) | |
10 | 6, 9 | mpan2 687 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) ∈ ℂ) |
11 | abscl 14476 | . . . . . . 7 ⊢ ((𝐴 − 0) ∈ ℂ → (abs‘(𝐴 − 0)) ∈ ℝ) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (abs‘(𝐴 − 0)) ∈ ℝ) |
13 | subcl 10738 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐵 − 0) ∈ ℂ) | |
14 | 6, 13 | mpan2 687 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝐵 − 0) ∈ ℂ) |
15 | abscl 14476 | . . . . . . 7 ⊢ ((𝐵 − 0) ∈ ℂ → (abs‘(𝐵 − 0)) ∈ ℝ) | |
16 | 14, 15 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) ∈ ℝ) |
17 | 12, 16 | anim12i 612 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ)) |
18 | subcl 10738 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
19 | abscl 14476 | . . . . . 6 ⊢ ((𝐴 − 𝐵) ∈ ℂ → (abs‘(𝐴 − 𝐵)) ∈ ℝ) | |
20 | 18, 19 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) ∈ ℝ) |
21 | df-3an 1082 | . . . . 5 ⊢ (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ) ↔ (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ) ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ)) | |
22 | 17, 20, 21 | sylanbrc 583 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ)) |
23 | lesubadd 10966 | . . . 4 ⊢ (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ) → (((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴 − 𝐵)) ↔ (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 0))))) | |
24 | 22, 23 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴 − 𝐵)) ↔ (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 0))))) |
25 | 8, 24 | mpbird 258 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴 − 𝐵))) |
26 | 5, 25 | eqbrtrrd 4992 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 ∈ wcel 2083 class class class wbr 4968 ‘cfv 6232 (class class class)co 7023 ℂcc 10388 ℝcr 10389 0cc0 10390 + caddc 10393 ≤ cle 10529 − cmin 10723 abscabs 14431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-pre-sup 10468 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-sup 8759 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-2 11554 df-3 11555 df-n0 11752 df-z 11836 df-uz 12098 df-rp 12244 df-seq 13224 df-exp 13284 df-cj 14296 df-re 14297 df-im 14298 df-sqrt 14432 df-abs 14433 |
This theorem is referenced by: abs2difabs 14532 absrdbnd 14539 caubnd2 14555 abs2difd 14655 abelthlem2 24707 logfacbnd3 25485 log2sumbnd 25806 abs2difi 32535 |
Copyright terms: Public domain | W3C validator |