MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs2dif Structured version   Visualization version   GIF version

Theorem abs2dif 15284
Description: Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
Assertion
Ref Expression
abs2dif ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))

Proof of Theorem abs2dif
StepHypRef Expression
1 subid1 11485 . . . 4 (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴)
21fveq2d 6895 . . 3 (𝐴 ∈ ℂ → (abs‘(𝐴 − 0)) = (abs‘𝐴))
3 subid1 11485 . . . 4 (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵)
43fveq2d 6895 . . 3 (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵))
52, 4oveqan12d 7431 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) = ((abs‘𝐴) − (abs‘𝐵)))
6 0cn 11211 . . . 4 0 ∈ ℂ
7 abs3dif 15283 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴𝐵)) + (abs‘(𝐵 − 0))))
86, 7mp3an2 1448 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴𝐵)) + (abs‘(𝐵 − 0))))
9 subcl 11464 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 − 0) ∈ ℂ)
106, 9mpan2 688 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 − 0) ∈ ℂ)
11 abscl 15230 . . . . . . 7 ((𝐴 − 0) ∈ ℂ → (abs‘(𝐴 − 0)) ∈ ℝ)
1210, 11syl 17 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(𝐴 − 0)) ∈ ℝ)
13 subcl 11464 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐵 − 0) ∈ ℂ)
146, 13mpan2 688 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵 − 0) ∈ ℂ)
15 abscl 15230 . . . . . . 7 ((𝐵 − 0) ∈ ℂ → (abs‘(𝐵 − 0)) ∈ ℝ)
1614, 15syl 17 . . . . . 6 (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) ∈ ℝ)
1712, 16anim12i 612 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ))
18 subcl 11464 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
19 abscl 15230 . . . . . 6 ((𝐴𝐵) ∈ ℂ → (abs‘(𝐴𝐵)) ∈ ℝ)
2018, 19syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴𝐵)) ∈ ℝ)
21 df-3an 1088 . . . . 5 (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴𝐵)) ∈ ℝ) ↔ (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ) ∧ (abs‘(𝐴𝐵)) ∈ ℝ))
2217, 20, 21sylanbrc 582 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴𝐵)) ∈ ℝ))
23 lesubadd 11691 . . . 4 (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴𝐵)) ∈ ℝ) → (((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴𝐵)) ↔ (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴𝐵)) + (abs‘(𝐵 − 0)))))
2422, 23syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴𝐵)) ↔ (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴𝐵)) + (abs‘(𝐵 − 0)))))
258, 24mpbird 257 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴𝐵)))
265, 25eqbrtrrd 5172 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086  wcel 2105   class class class wbr 5148  cfv 6543  (class class class)co 7412  cc 11111  cr 11112  0cc0 11113   + caddc 11116  cle 11254  cmin 11449  abscabs 15186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-sup 9440  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-rp 12980  df-seq 13972  df-exp 14033  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188
This theorem is referenced by:  abs2difabs  15286  absrdbnd  15293  caubnd2  15309  abs2difd  15409  abelthlem2  26181  logfacbnd3  26963  log2sumbnd  27284  abs2difi  34966
  Copyright terms: Public domain W3C validator