| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abs2dif | Structured version Visualization version GIF version | ||
| Description: Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
| Ref | Expression |
|---|---|
| abs2dif | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subid1 11418 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) | |
| 2 | 1 | fveq2d 6844 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(𝐴 − 0)) = (abs‘𝐴)) |
| 3 | subid1 11418 | . . . 4 ⊢ (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵) | |
| 4 | 3 | fveq2d 6844 | . . 3 ⊢ (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵)) |
| 5 | 2, 4 | oveqan12d 7388 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) = ((abs‘𝐴) − (abs‘𝐵))) |
| 6 | 0cn 11142 | . . . 4 ⊢ 0 ∈ ℂ | |
| 7 | abs3dif 15274 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 0)))) | |
| 8 | 6, 7 | mp3an2 1451 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 0)))) |
| 9 | subcl 11396 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 − 0) ∈ ℂ) | |
| 10 | 6, 9 | mpan2 691 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) ∈ ℂ) |
| 11 | abscl 15220 | . . . . . . 7 ⊢ ((𝐴 − 0) ∈ ℂ → (abs‘(𝐴 − 0)) ∈ ℝ) | |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (abs‘(𝐴 − 0)) ∈ ℝ) |
| 13 | subcl 11396 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐵 − 0) ∈ ℂ) | |
| 14 | 6, 13 | mpan2 691 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝐵 − 0) ∈ ℂ) |
| 15 | abscl 15220 | . . . . . . 7 ⊢ ((𝐵 − 0) ∈ ℂ → (abs‘(𝐵 − 0)) ∈ ℝ) | |
| 16 | 14, 15 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) ∈ ℝ) |
| 17 | 12, 16 | anim12i 613 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ)) |
| 18 | subcl 11396 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
| 19 | abscl 15220 | . . . . . 6 ⊢ ((𝐴 − 𝐵) ∈ ℂ → (abs‘(𝐴 − 𝐵)) ∈ ℝ) | |
| 20 | 18, 19 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) ∈ ℝ) |
| 21 | df-3an 1088 | . . . . 5 ⊢ (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ) ↔ (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ) ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ)) | |
| 22 | 17, 20, 21 | sylanbrc 583 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ)) |
| 23 | lesubadd 11626 | . . . 4 ⊢ (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ) → (((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴 − 𝐵)) ↔ (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 0))))) | |
| 24 | 22, 23 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴 − 𝐵)) ↔ (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 0))))) |
| 25 | 8, 24 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴 − 𝐵))) |
| 26 | 5, 25 | eqbrtrrd 5126 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 + caddc 11047 ≤ cle 11185 − cmin 11381 abscabs 15176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 |
| This theorem is referenced by: abs2difabs 15277 absrdbnd 15284 caubnd2 15300 abs2difd 15402 abelthlem2 26318 logfacbnd3 27110 log2sumbnd 27431 abs2difi 35642 |
| Copyright terms: Public domain | W3C validator |