MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsficl Structured version   Visualization version   GIF version

Theorem acsficl 18542
Description: A closure in an algebraic closure system is the union of the closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
acsdrscl.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
acsficl ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝑋) → (𝐹𝑆) = (𝐹 “ (𝒫 𝑆 ∩ Fin)))

Proof of Theorem acsficl
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6896 . . 3 (𝑠 = 𝑆 → (𝐹𝑠) = (𝐹𝑆))
2 pweq 4618 . . . . . 6 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
32ineq1d 4209 . . . . 5 (𝑠 = 𝑆 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑆 ∩ Fin))
43imaeq2d 6064 . . . 4 (𝑠 = 𝑆 → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑆 ∩ Fin)))
54unieqd 4922 . . 3 (𝑠 = 𝑆 (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑆 ∩ Fin)))
61, 5eqeq12d 2741 . 2 (𝑠 = 𝑆 → ((𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin)) ↔ (𝐹𝑆) = (𝐹 “ (𝒫 𝑆 ∩ Fin))))
7 isacs3lem 18537 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
8 acsdrscl.f . . . . . 6 𝐹 = (mrCls‘𝐶)
98isacs4lem 18539 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
108isacs5lem 18540 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
117, 9, 103syl 18 . . . 4 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
1211simprd 494 . . 3 (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
1312adantr 479 . 2 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
14 elfvdm 6933 . . . 4 (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ dom ACS)
15 elpw2g 5347 . . . 4 (𝑋 ∈ dom ACS → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1614, 15syl 17 . . 3 (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1716biimpar 476 . 2 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
186, 13, 17rspcdva 3607 1 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝑋) → (𝐹𝑆) = (𝐹 “ (𝒫 𝑆 ∩ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050  cin 3943  wss 3944  𝒫 cpw 4604   cuni 4909  dom cdm 5678  cima 5681  cfv 6549  Fincfn 8964  Moorecmre 17565  mrClscmrc 17566  ACScacs 17568  Dirsetcdrs 18289  toInccipo 18522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-struct 17119  df-slot 17154  df-ndx 17166  df-base 17184  df-tset 17255  df-ple 17256  df-ocomp 17257  df-mre 17569  df-mrc 17570  df-acs 17572  df-proset 18290  df-drs 18291  df-poset 18308  df-ipo 18523
This theorem is referenced by:  acsficld  18546
  Copyright terms: Public domain W3C validator