| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsficl | Structured version Visualization version GIF version | ||
| Description: A closure in an algebraic closure system is the union of the closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| acsdrscl.f | ⊢ 𝐹 = (mrCls‘𝐶) |
| Ref | Expression |
|---|---|
| acsficl | ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝐹‘𝑆) = ∪ (𝐹 “ (𝒫 𝑆 ∩ Fin))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6881 | . . 3 ⊢ (𝑠 = 𝑆 → (𝐹‘𝑠) = (𝐹‘𝑆)) | |
| 2 | pweq 4594 | . . . . . 6 ⊢ (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆) | |
| 3 | 2 | ineq1d 4199 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑆 ∩ Fin)) |
| 4 | 3 | imaeq2d 6052 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑆 ∩ Fin))) |
| 5 | 4 | unieqd 4901 | . . 3 ⊢ (𝑠 = 𝑆 → ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) = ∪ (𝐹 “ (𝒫 𝑆 ∩ Fin))) |
| 6 | 1, 5 | eqeq12d 2752 | . 2 ⊢ (𝑠 = 𝑆 → ((𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ↔ (𝐹‘𝑆) = ∪ (𝐹 “ (𝒫 𝑆 ∩ Fin)))) |
| 7 | isacs3lem 18557 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶))) | |
| 8 | acsdrscl.f | . . . . . 6 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 9 | 8 | isacs4lem 18559 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡)))) |
| 10 | 8 | isacs5lem 18560 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
| 11 | 7, 9, 10 | 3syl 18 | . . . 4 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
| 12 | 11 | simprd 495 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
| 13 | 12 | adantr 480 | . 2 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
| 14 | elfvdm 6918 | . . . 4 ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ dom ACS) | |
| 15 | elpw2g 5308 | . . . 4 ⊢ (𝑋 ∈ dom ACS → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
| 17 | 16 | biimpar 477 | . 2 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
| 18 | 6, 13, 17 | rspcdva 3607 | 1 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝐹‘𝑆) = ∪ (𝐹 “ (𝒫 𝑆 ∩ Fin))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∩ cin 3930 ⊆ wss 3931 𝒫 cpw 4580 ∪ cuni 4888 dom cdm 5659 “ cima 5662 ‘cfv 6536 Fincfn 8964 Moorecmre 17599 mrClscmrc 17600 ACScacs 17602 Dirsetcdrs 18310 toInccipo 18542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-tset 17295 df-ple 17296 df-ocomp 17297 df-mre 17603 df-mrc 17604 df-acs 17606 df-proset 18311 df-drs 18312 df-poset 18330 df-ipo 18543 |
| This theorem is referenced by: acsficld 18566 |
| Copyright terms: Public domain | W3C validator |