MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efchtdvds Structured version   Visualization version   GIF version

Theorem efchtdvds 27069
Description: The exponentiated Chebyshev function forms a divisibility chain between any two points. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
efchtdvds ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵)))

Proof of Theorem efchtdvds
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chtcl 27019 . . . . . . 7 (𝐵 ∈ ℝ → (θ‘𝐵) ∈ ℝ)
213ad2ant2 1134 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘𝐵) ∈ ℝ)
32recnd 11202 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘𝐵) ∈ ℂ)
4 chtcl 27019 . . . . . . 7 (𝐴 ∈ ℝ → (θ‘𝐴) ∈ ℝ)
543ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘𝐴) ∈ ℝ)
65recnd 11202 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘𝐴) ∈ ℂ)
7 efsub 16068 . . . . 5 (((θ‘𝐵) ∈ ℂ ∧ (θ‘𝐴) ∈ ℂ) → (exp‘((θ‘𝐵) − (θ‘𝐴))) = ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))))
83, 6, 7syl2anc 584 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘((θ‘𝐵) − (θ‘𝐴))) = ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))))
9 chtfl 27059 . . . . . . . . 9 (𝐵 ∈ ℝ → (θ‘(⌊‘𝐵)) = (θ‘𝐵))
1093ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘(⌊‘𝐵)) = (θ‘𝐵))
11 chtfl 27059 . . . . . . . . 9 (𝐴 ∈ ℝ → (θ‘(⌊‘𝐴)) = (θ‘𝐴))
12113ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘(⌊‘𝐴)) = (θ‘𝐴))
1310, 12oveq12d 7405 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((θ‘(⌊‘𝐵)) − (θ‘(⌊‘𝐴))) = ((θ‘𝐵) − (θ‘𝐴)))
14 flword2 13775 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (⌊‘𝐵) ∈ (ℤ‘(⌊‘𝐴)))
15 chtdif 27068 . . . . . . . 8 ((⌊‘𝐵) ∈ (ℤ‘(⌊‘𝐴)) → ((θ‘(⌊‘𝐵)) − (θ‘(⌊‘𝐴))) = Σ𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)(log‘𝑝))
1614, 15syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((θ‘(⌊‘𝐵)) − (θ‘(⌊‘𝐴))) = Σ𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)(log‘𝑝))
1713, 16eqtr3d 2766 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((θ‘𝐵) − (θ‘𝐴)) = Σ𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)(log‘𝑝))
18 ssrab2 4043 . . . . . . . . 9 {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℝ
19 ax-resscn 11125 . . . . . . . . 9 ℝ ⊆ ℂ
2018, 19sstri 3956 . . . . . . . 8 {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℂ
2120a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℂ)
22 fveq2 6858 . . . . . . . . . . 11 (𝑥 = 𝑦 → (exp‘𝑥) = (exp‘𝑦))
2322eleq1d 2813 . . . . . . . . . 10 (𝑥 = 𝑦 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝑦) ∈ ℕ))
2423elrab 3659 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ))
25 fveq2 6858 . . . . . . . . . . 11 (𝑥 = 𝑧 → (exp‘𝑥) = (exp‘𝑧))
2625eleq1d 2813 . . . . . . . . . 10 (𝑥 = 𝑧 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝑧) ∈ ℕ))
2726elrab 3659 . . . . . . . . 9 (𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ))
28 fveq2 6858 . . . . . . . . . . 11 (𝑥 = (𝑦 + 𝑧) → (exp‘𝑥) = (exp‘(𝑦 + 𝑧)))
2928eleq1d 2813 . . . . . . . . . 10 (𝑥 = (𝑦 + 𝑧) → ((exp‘𝑥) ∈ ℕ ↔ (exp‘(𝑦 + 𝑧)) ∈ ℕ))
30 simpll 766 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑦 ∈ ℝ)
31 simprl 770 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑧 ∈ ℝ)
3230, 31readdcld 11203 . . . . . . . . . 10 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (𝑦 + 𝑧) ∈ ℝ)
3330recnd 11202 . . . . . . . . . . . 12 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑦 ∈ ℂ)
3431recnd 11202 . . . . . . . . . . . 12 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑧 ∈ ℂ)
35 efadd 16060 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑦 + 𝑧)) = ((exp‘𝑦) · (exp‘𝑧)))
3633, 34, 35syl2anc 584 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (exp‘(𝑦 + 𝑧)) = ((exp‘𝑦) · (exp‘𝑧)))
37 nnmulcl 12210 . . . . . . . . . . . 12 (((exp‘𝑦) ∈ ℕ ∧ (exp‘𝑧) ∈ ℕ) → ((exp‘𝑦) · (exp‘𝑧)) ∈ ℕ)
3837ad2ant2l 746 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → ((exp‘𝑦) · (exp‘𝑧)) ∈ ℕ)
3936, 38eqeltrd 2828 . . . . . . . . . 10 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (exp‘(𝑦 + 𝑧)) ∈ ℕ)
4029, 32, 39elrabd 3661 . . . . . . . . 9 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
4124, 27, 40syl2anb 598 . . . . . . . 8 ((𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ∧ 𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ}) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
4241adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ (𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ∧ 𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
43 fzfid 13938 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∈ Fin)
44 inss1 4200 . . . . . . . 8 ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ) ⊆ (((⌊‘𝐴) + 1)...(⌊‘𝐵))
45 ssfi 9137 . . . . . . . 8 (((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∈ Fin ∧ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ) ⊆ (((⌊‘𝐴) + 1)...(⌊‘𝐵))) → ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ) ∈ Fin)
4643, 44, 45sylancl 586 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ) ∈ Fin)
47 fveq2 6858 . . . . . . . . 9 (𝑥 = (log‘𝑝) → (exp‘𝑥) = (exp‘(log‘𝑝)))
4847eleq1d 2813 . . . . . . . 8 (𝑥 = (log‘𝑝) → ((exp‘𝑥) ∈ ℕ ↔ (exp‘(log‘𝑝)) ∈ ℕ))
49 simpr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ))
5049elin2d 4168 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → 𝑝 ∈ ℙ)
51 prmnn 16644 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
5250, 51syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → 𝑝 ∈ ℕ)
5352nnrpd 12993 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
5453relogcld 26532 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
5553reeflogd 26533 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → (exp‘(log‘𝑝)) = 𝑝)
5655, 52eqeltrd 2828 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → (exp‘(log‘𝑝)) ∈ ℕ)
5748, 54, 56elrabd 3661 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → (log‘𝑝) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
58 0re 11176 . . . . . . . . 9 0 ∈ ℝ
59 1nn 12197 . . . . . . . . 9 1 ∈ ℕ
60 fveq2 6858 . . . . . . . . . . . 12 (𝑥 = 0 → (exp‘𝑥) = (exp‘0))
61 ef0 16057 . . . . . . . . . . . 12 (exp‘0) = 1
6260, 61eqtrdi 2780 . . . . . . . . . . 11 (𝑥 = 0 → (exp‘𝑥) = 1)
6362eleq1d 2813 . . . . . . . . . 10 (𝑥 = 0 → ((exp‘𝑥) ∈ ℕ ↔ 1 ∈ ℕ))
6463elrab 3659 . . . . . . . . 9 (0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (0 ∈ ℝ ∧ 1 ∈ ℕ))
6558, 59, 64mpbir2an 711 . . . . . . . 8 0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ}
6665a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
6721, 42, 46, 57, 66fsumcllem 15698 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → Σ𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)(log‘𝑝) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
6817, 67eqeltrd 2828 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((θ‘𝐵) − (θ‘𝐴)) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
69 fveq2 6858 . . . . . . . 8 (𝑥 = ((θ‘𝐵) − (θ‘𝐴)) → (exp‘𝑥) = (exp‘((θ‘𝐵) − (θ‘𝐴))))
7069eleq1d 2813 . . . . . . 7 (𝑥 = ((θ‘𝐵) − (θ‘𝐴)) → ((exp‘𝑥) ∈ ℕ ↔ (exp‘((θ‘𝐵) − (θ‘𝐴))) ∈ ℕ))
7170elrab 3659 . . . . . 6 (((θ‘𝐵) − (θ‘𝐴)) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (((θ‘𝐵) − (θ‘𝐴)) ∈ ℝ ∧ (exp‘((θ‘𝐵) − (θ‘𝐴))) ∈ ℕ))
7271simprbi 496 . . . . 5 (((θ‘𝐵) − (θ‘𝐴)) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} → (exp‘((θ‘𝐵) − (θ‘𝐴))) ∈ ℕ)
7368, 72syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘((θ‘𝐵) − (θ‘𝐴))) ∈ ℕ)
748, 73eqeltrrd 2829 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))) ∈ ℕ)
7574nnzd 12556 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))) ∈ ℤ)
76 efchtcl 27021 . . . . 5 (𝐴 ∈ ℝ → (exp‘(θ‘𝐴)) ∈ ℕ)
77763ad2ant1 1133 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ∈ ℕ)
7877nnzd 12556 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ∈ ℤ)
7977nnne0d 12236 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ≠ 0)
80 efchtcl 27021 . . . . 5 (𝐵 ∈ ℝ → (exp‘(θ‘𝐵)) ∈ ℕ)
81803ad2ant2 1134 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐵)) ∈ ℕ)
8281nnzd 12556 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐵)) ∈ ℤ)
83 dvdsval2 16225 . . 3 (((exp‘(θ‘𝐴)) ∈ ℤ ∧ (exp‘(θ‘𝐴)) ≠ 0 ∧ (exp‘(θ‘𝐵)) ∈ ℤ) → ((exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵)) ↔ ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))) ∈ ℤ))
8478, 79, 82, 83syl3anc 1373 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵)) ↔ ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))) ∈ ℤ))
8575, 84mpbird 257 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3405  cin 3913  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cle 11209  cmin 11405   / cdiv 11835  cn 12186  cz 12529  cuz 12793  ...cfz 13468  cfl 13752  Σcsu 15652  expce 16027  cdvds 16222  cprime 16641  logclog 26463  θccht 27001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-prm 16642  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cht 27007
This theorem is referenced by:  bposlem6  27200
  Copyright terms: Public domain W3C validator