MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efchtdvds Structured version   Visualization version   GIF version

Theorem efchtdvds 27094
Description: The exponentiated Chebyshev function forms a divisibility chain between any two points. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
efchtdvds ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵)))

Proof of Theorem efchtdvds
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chtcl 27044 . . . . . . 7 (𝐵 ∈ ℝ → (θ‘𝐵) ∈ ℝ)
213ad2ant2 1134 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘𝐵) ∈ ℝ)
32recnd 11137 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘𝐵) ∈ ℂ)
4 chtcl 27044 . . . . . . 7 (𝐴 ∈ ℝ → (θ‘𝐴) ∈ ℝ)
543ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘𝐴) ∈ ℝ)
65recnd 11137 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘𝐴) ∈ ℂ)
7 efsub 16006 . . . . 5 (((θ‘𝐵) ∈ ℂ ∧ (θ‘𝐴) ∈ ℂ) → (exp‘((θ‘𝐵) − (θ‘𝐴))) = ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))))
83, 6, 7syl2anc 584 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘((θ‘𝐵) − (θ‘𝐴))) = ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))))
9 chtfl 27084 . . . . . . . . 9 (𝐵 ∈ ℝ → (θ‘(⌊‘𝐵)) = (θ‘𝐵))
1093ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘(⌊‘𝐵)) = (θ‘𝐵))
11 chtfl 27084 . . . . . . . . 9 (𝐴 ∈ ℝ → (θ‘(⌊‘𝐴)) = (θ‘𝐴))
12113ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘(⌊‘𝐴)) = (θ‘𝐴))
1310, 12oveq12d 7364 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((θ‘(⌊‘𝐵)) − (θ‘(⌊‘𝐴))) = ((θ‘𝐵) − (θ‘𝐴)))
14 flword2 13714 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (⌊‘𝐵) ∈ (ℤ‘(⌊‘𝐴)))
15 chtdif 27093 . . . . . . . 8 ((⌊‘𝐵) ∈ (ℤ‘(⌊‘𝐴)) → ((θ‘(⌊‘𝐵)) − (θ‘(⌊‘𝐴))) = Σ𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)(log‘𝑝))
1614, 15syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((θ‘(⌊‘𝐵)) − (θ‘(⌊‘𝐴))) = Σ𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)(log‘𝑝))
1713, 16eqtr3d 2768 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((θ‘𝐵) − (θ‘𝐴)) = Σ𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)(log‘𝑝))
18 ssrab2 4030 . . . . . . . . 9 {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℝ
19 ax-resscn 11060 . . . . . . . . 9 ℝ ⊆ ℂ
2018, 19sstri 3944 . . . . . . . 8 {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℂ
2120a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℂ)
22 fveq2 6822 . . . . . . . . . . 11 (𝑥 = 𝑦 → (exp‘𝑥) = (exp‘𝑦))
2322eleq1d 2816 . . . . . . . . . 10 (𝑥 = 𝑦 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝑦) ∈ ℕ))
2423elrab 3647 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ))
25 fveq2 6822 . . . . . . . . . . 11 (𝑥 = 𝑧 → (exp‘𝑥) = (exp‘𝑧))
2625eleq1d 2816 . . . . . . . . . 10 (𝑥 = 𝑧 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝑧) ∈ ℕ))
2726elrab 3647 . . . . . . . . 9 (𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ))
28 fveq2 6822 . . . . . . . . . . 11 (𝑥 = (𝑦 + 𝑧) → (exp‘𝑥) = (exp‘(𝑦 + 𝑧)))
2928eleq1d 2816 . . . . . . . . . 10 (𝑥 = (𝑦 + 𝑧) → ((exp‘𝑥) ∈ ℕ ↔ (exp‘(𝑦 + 𝑧)) ∈ ℕ))
30 simpll 766 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑦 ∈ ℝ)
31 simprl 770 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑧 ∈ ℝ)
3230, 31readdcld 11138 . . . . . . . . . 10 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (𝑦 + 𝑧) ∈ ℝ)
3330recnd 11137 . . . . . . . . . . . 12 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑦 ∈ ℂ)
3431recnd 11137 . . . . . . . . . . . 12 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑧 ∈ ℂ)
35 efadd 15998 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑦 + 𝑧)) = ((exp‘𝑦) · (exp‘𝑧)))
3633, 34, 35syl2anc 584 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (exp‘(𝑦 + 𝑧)) = ((exp‘𝑦) · (exp‘𝑧)))
37 nnmulcl 12146 . . . . . . . . . . . 12 (((exp‘𝑦) ∈ ℕ ∧ (exp‘𝑧) ∈ ℕ) → ((exp‘𝑦) · (exp‘𝑧)) ∈ ℕ)
3837ad2ant2l 746 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → ((exp‘𝑦) · (exp‘𝑧)) ∈ ℕ)
3936, 38eqeltrd 2831 . . . . . . . . . 10 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (exp‘(𝑦 + 𝑧)) ∈ ℕ)
4029, 32, 39elrabd 3649 . . . . . . . . 9 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
4124, 27, 40syl2anb 598 . . . . . . . 8 ((𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ∧ 𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ}) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
4241adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ (𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ∧ 𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
43 fzfid 13877 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∈ Fin)
44 inss1 4187 . . . . . . . 8 ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ) ⊆ (((⌊‘𝐴) + 1)...(⌊‘𝐵))
45 ssfi 9082 . . . . . . . 8 (((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∈ Fin ∧ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ) ⊆ (((⌊‘𝐴) + 1)...(⌊‘𝐵))) → ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ) ∈ Fin)
4643, 44, 45sylancl 586 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ) ∈ Fin)
47 fveq2 6822 . . . . . . . . 9 (𝑥 = (log‘𝑝) → (exp‘𝑥) = (exp‘(log‘𝑝)))
4847eleq1d 2816 . . . . . . . 8 (𝑥 = (log‘𝑝) → ((exp‘𝑥) ∈ ℕ ↔ (exp‘(log‘𝑝)) ∈ ℕ))
49 simpr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ))
5049elin2d 4155 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → 𝑝 ∈ ℙ)
51 prmnn 16582 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
5250, 51syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → 𝑝 ∈ ℕ)
5352nnrpd 12929 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
5453relogcld 26557 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
5553reeflogd 26558 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → (exp‘(log‘𝑝)) = 𝑝)
5655, 52eqeltrd 2831 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → (exp‘(log‘𝑝)) ∈ ℕ)
5748, 54, 56elrabd 3649 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → (log‘𝑝) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
58 0re 11111 . . . . . . . . 9 0 ∈ ℝ
59 1nn 12133 . . . . . . . . 9 1 ∈ ℕ
60 fveq2 6822 . . . . . . . . . . . 12 (𝑥 = 0 → (exp‘𝑥) = (exp‘0))
61 ef0 15995 . . . . . . . . . . . 12 (exp‘0) = 1
6260, 61eqtrdi 2782 . . . . . . . . . . 11 (𝑥 = 0 → (exp‘𝑥) = 1)
6362eleq1d 2816 . . . . . . . . . 10 (𝑥 = 0 → ((exp‘𝑥) ∈ ℕ ↔ 1 ∈ ℕ))
6463elrab 3647 . . . . . . . . 9 (0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (0 ∈ ℝ ∧ 1 ∈ ℕ))
6558, 59, 64mpbir2an 711 . . . . . . . 8 0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ}
6665a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
6721, 42, 46, 57, 66fsumcllem 15636 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → Σ𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)(log‘𝑝) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
6817, 67eqeltrd 2831 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((θ‘𝐵) − (θ‘𝐴)) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
69 fveq2 6822 . . . . . . . 8 (𝑥 = ((θ‘𝐵) − (θ‘𝐴)) → (exp‘𝑥) = (exp‘((θ‘𝐵) − (θ‘𝐴))))
7069eleq1d 2816 . . . . . . 7 (𝑥 = ((θ‘𝐵) − (θ‘𝐴)) → ((exp‘𝑥) ∈ ℕ ↔ (exp‘((θ‘𝐵) − (θ‘𝐴))) ∈ ℕ))
7170elrab 3647 . . . . . 6 (((θ‘𝐵) − (θ‘𝐴)) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (((θ‘𝐵) − (θ‘𝐴)) ∈ ℝ ∧ (exp‘((θ‘𝐵) − (θ‘𝐴))) ∈ ℕ))
7271simprbi 496 . . . . 5 (((θ‘𝐵) − (θ‘𝐴)) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} → (exp‘((θ‘𝐵) − (θ‘𝐴))) ∈ ℕ)
7368, 72syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘((θ‘𝐵) − (θ‘𝐴))) ∈ ℕ)
748, 73eqeltrrd 2832 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))) ∈ ℕ)
7574nnzd 12492 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))) ∈ ℤ)
76 efchtcl 27046 . . . . 5 (𝐴 ∈ ℝ → (exp‘(θ‘𝐴)) ∈ ℕ)
77763ad2ant1 1133 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ∈ ℕ)
7877nnzd 12492 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ∈ ℤ)
7977nnne0d 12172 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ≠ 0)
80 efchtcl 27046 . . . . 5 (𝐵 ∈ ℝ → (exp‘(θ‘𝐵)) ∈ ℕ)
81803ad2ant2 1134 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐵)) ∈ ℕ)
8281nnzd 12492 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐵)) ∈ ℤ)
83 dvdsval2 16163 . . 3 (((exp‘(θ‘𝐴)) ∈ ℤ ∧ (exp‘(θ‘𝐴)) ≠ 0 ∧ (exp‘(θ‘𝐵)) ∈ ℤ) → ((exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵)) ↔ ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))) ∈ ℤ))
8478, 79, 82, 83syl3anc 1373 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵)) ↔ ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))) ∈ ℤ))
8575, 84mpbird 257 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  {crab 3395  cin 3901  wss 3902   class class class wbr 5091  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008  cle 11144  cmin 11341   / cdiv 11771  cn 12122  cz 12465  cuz 12729  ...cfz 13404  cfl 13691  Σcsu 15590  expce 15965  cdvds 16160  cprime 16579  logclog 26488  θccht 27026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-ef 15971  df-sin 15973  df-cos 15974  df-pi 15976  df-dvds 16161  df-prm 16580  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049  df-perf 23050  df-cn 23140  df-cnp 23141  df-haus 23228  df-tx 23475  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-limc 25792  df-dv 25793  df-log 26490  df-cht 27032
This theorem is referenced by:  bposlem6  27225
  Copyright terms: Public domain W3C validator