MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efchtdvds Structured version   Visualization version   GIF version

Theorem efchtdvds 27097
Description: The exponentiated Chebyshev function forms a divisibility chain between any two points. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
efchtdvds ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵)))

Proof of Theorem efchtdvds
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chtcl 27047 . . . . . . 7 (𝐵 ∈ ℝ → (θ‘𝐵) ∈ ℝ)
213ad2ant2 1134 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘𝐵) ∈ ℝ)
32recnd 11147 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘𝐵) ∈ ℂ)
4 chtcl 27047 . . . . . . 7 (𝐴 ∈ ℝ → (θ‘𝐴) ∈ ℝ)
543ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘𝐴) ∈ ℝ)
65recnd 11147 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘𝐴) ∈ ℂ)
7 efsub 16011 . . . . 5 (((θ‘𝐵) ∈ ℂ ∧ (θ‘𝐴) ∈ ℂ) → (exp‘((θ‘𝐵) − (θ‘𝐴))) = ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))))
83, 6, 7syl2anc 584 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘((θ‘𝐵) − (θ‘𝐴))) = ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))))
9 chtfl 27087 . . . . . . . . 9 (𝐵 ∈ ℝ → (θ‘(⌊‘𝐵)) = (θ‘𝐵))
1093ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘(⌊‘𝐵)) = (θ‘𝐵))
11 chtfl 27087 . . . . . . . . 9 (𝐴 ∈ ℝ → (θ‘(⌊‘𝐴)) = (θ‘𝐴))
12113ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘(⌊‘𝐴)) = (θ‘𝐴))
1310, 12oveq12d 7370 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((θ‘(⌊‘𝐵)) − (θ‘(⌊‘𝐴))) = ((θ‘𝐵) − (θ‘𝐴)))
14 flword2 13719 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (⌊‘𝐵) ∈ (ℤ‘(⌊‘𝐴)))
15 chtdif 27096 . . . . . . . 8 ((⌊‘𝐵) ∈ (ℤ‘(⌊‘𝐴)) → ((θ‘(⌊‘𝐵)) − (θ‘(⌊‘𝐴))) = Σ𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)(log‘𝑝))
1614, 15syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((θ‘(⌊‘𝐵)) − (θ‘(⌊‘𝐴))) = Σ𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)(log‘𝑝))
1713, 16eqtr3d 2770 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((θ‘𝐵) − (θ‘𝐴)) = Σ𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)(log‘𝑝))
18 ssrab2 4029 . . . . . . . . 9 {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℝ
19 ax-resscn 11070 . . . . . . . . 9 ℝ ⊆ ℂ
2018, 19sstri 3940 . . . . . . . 8 {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℂ
2120a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℂ)
22 fveq2 6828 . . . . . . . . . . 11 (𝑥 = 𝑦 → (exp‘𝑥) = (exp‘𝑦))
2322eleq1d 2818 . . . . . . . . . 10 (𝑥 = 𝑦 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝑦) ∈ ℕ))
2423elrab 3643 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ))
25 fveq2 6828 . . . . . . . . . . 11 (𝑥 = 𝑧 → (exp‘𝑥) = (exp‘𝑧))
2625eleq1d 2818 . . . . . . . . . 10 (𝑥 = 𝑧 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝑧) ∈ ℕ))
2726elrab 3643 . . . . . . . . 9 (𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ))
28 fveq2 6828 . . . . . . . . . . 11 (𝑥 = (𝑦 + 𝑧) → (exp‘𝑥) = (exp‘(𝑦 + 𝑧)))
2928eleq1d 2818 . . . . . . . . . 10 (𝑥 = (𝑦 + 𝑧) → ((exp‘𝑥) ∈ ℕ ↔ (exp‘(𝑦 + 𝑧)) ∈ ℕ))
30 simpll 766 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑦 ∈ ℝ)
31 simprl 770 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑧 ∈ ℝ)
3230, 31readdcld 11148 . . . . . . . . . 10 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (𝑦 + 𝑧) ∈ ℝ)
3330recnd 11147 . . . . . . . . . . . 12 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑦 ∈ ℂ)
3431recnd 11147 . . . . . . . . . . . 12 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑧 ∈ ℂ)
35 efadd 16003 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑦 + 𝑧)) = ((exp‘𝑦) · (exp‘𝑧)))
3633, 34, 35syl2anc 584 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (exp‘(𝑦 + 𝑧)) = ((exp‘𝑦) · (exp‘𝑧)))
37 nnmulcl 12156 . . . . . . . . . . . 12 (((exp‘𝑦) ∈ ℕ ∧ (exp‘𝑧) ∈ ℕ) → ((exp‘𝑦) · (exp‘𝑧)) ∈ ℕ)
3837ad2ant2l 746 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → ((exp‘𝑦) · (exp‘𝑧)) ∈ ℕ)
3936, 38eqeltrd 2833 . . . . . . . . . 10 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (exp‘(𝑦 + 𝑧)) ∈ ℕ)
4029, 32, 39elrabd 3645 . . . . . . . . 9 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
4124, 27, 40syl2anb 598 . . . . . . . 8 ((𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ∧ 𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ}) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
4241adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ (𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ∧ 𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
43 fzfid 13882 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∈ Fin)
44 inss1 4186 . . . . . . . 8 ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ) ⊆ (((⌊‘𝐴) + 1)...(⌊‘𝐵))
45 ssfi 9089 . . . . . . . 8 (((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∈ Fin ∧ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ) ⊆ (((⌊‘𝐴) + 1)...(⌊‘𝐵))) → ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ) ∈ Fin)
4643, 44, 45sylancl 586 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ) ∈ Fin)
47 fveq2 6828 . . . . . . . . 9 (𝑥 = (log‘𝑝) → (exp‘𝑥) = (exp‘(log‘𝑝)))
4847eleq1d 2818 . . . . . . . 8 (𝑥 = (log‘𝑝) → ((exp‘𝑥) ∈ ℕ ↔ (exp‘(log‘𝑝)) ∈ ℕ))
49 simpr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ))
5049elin2d 4154 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → 𝑝 ∈ ℙ)
51 prmnn 16587 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
5250, 51syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → 𝑝 ∈ ℕ)
5352nnrpd 12934 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
5453relogcld 26560 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
5553reeflogd 26561 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → (exp‘(log‘𝑝)) = 𝑝)
5655, 52eqeltrd 2833 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → (exp‘(log‘𝑝)) ∈ ℕ)
5748, 54, 56elrabd 3645 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → (log‘𝑝) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
58 0re 11121 . . . . . . . . 9 0 ∈ ℝ
59 1nn 12143 . . . . . . . . 9 1 ∈ ℕ
60 fveq2 6828 . . . . . . . . . . . 12 (𝑥 = 0 → (exp‘𝑥) = (exp‘0))
61 ef0 16000 . . . . . . . . . . . 12 (exp‘0) = 1
6260, 61eqtrdi 2784 . . . . . . . . . . 11 (𝑥 = 0 → (exp‘𝑥) = 1)
6362eleq1d 2818 . . . . . . . . . 10 (𝑥 = 0 → ((exp‘𝑥) ∈ ℕ ↔ 1 ∈ ℕ))
6463elrab 3643 . . . . . . . . 9 (0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (0 ∈ ℝ ∧ 1 ∈ ℕ))
6558, 59, 64mpbir2an 711 . . . . . . . 8 0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ}
6665a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
6721, 42, 46, 57, 66fsumcllem 15641 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → Σ𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)(log‘𝑝) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
6817, 67eqeltrd 2833 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((θ‘𝐵) − (θ‘𝐴)) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
69 fveq2 6828 . . . . . . . 8 (𝑥 = ((θ‘𝐵) − (θ‘𝐴)) → (exp‘𝑥) = (exp‘((θ‘𝐵) − (θ‘𝐴))))
7069eleq1d 2818 . . . . . . 7 (𝑥 = ((θ‘𝐵) − (θ‘𝐴)) → ((exp‘𝑥) ∈ ℕ ↔ (exp‘((θ‘𝐵) − (θ‘𝐴))) ∈ ℕ))
7170elrab 3643 . . . . . 6 (((θ‘𝐵) − (θ‘𝐴)) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (((θ‘𝐵) − (θ‘𝐴)) ∈ ℝ ∧ (exp‘((θ‘𝐵) − (θ‘𝐴))) ∈ ℕ))
7271simprbi 496 . . . . 5 (((θ‘𝐵) − (θ‘𝐴)) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} → (exp‘((θ‘𝐵) − (θ‘𝐴))) ∈ ℕ)
7368, 72syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘((θ‘𝐵) − (θ‘𝐴))) ∈ ℕ)
748, 73eqeltrrd 2834 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))) ∈ ℕ)
7574nnzd 12501 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))) ∈ ℤ)
76 efchtcl 27049 . . . . 5 (𝐴 ∈ ℝ → (exp‘(θ‘𝐴)) ∈ ℕ)
77763ad2ant1 1133 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ∈ ℕ)
7877nnzd 12501 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ∈ ℤ)
7977nnne0d 12182 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ≠ 0)
80 efchtcl 27049 . . . . 5 (𝐵 ∈ ℝ → (exp‘(θ‘𝐵)) ∈ ℕ)
81803ad2ant2 1134 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐵)) ∈ ℕ)
8281nnzd 12501 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐵)) ∈ ℤ)
83 dvdsval2 16168 . . 3 (((exp‘(θ‘𝐴)) ∈ ℤ ∧ (exp‘(θ‘𝐴)) ≠ 0 ∧ (exp‘(θ‘𝐵)) ∈ ℤ) → ((exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵)) ↔ ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))) ∈ ℤ))
8478, 79, 82, 83syl3anc 1373 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵)) ↔ ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))) ∈ ℤ))
8575, 84mpbird 257 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  {crab 3396  cin 3897  wss 3898   class class class wbr 5093  cfv 6486  (class class class)co 7352  Fincfn 8875  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  cle 11154  cmin 11351   / cdiv 11781  cn 12132  cz 12475  cuz 12738  ...cfz 13409  cfl 13696  Σcsu 15595  expce 15970  cdvds 16165  cprime 16584  logclog 26491  θccht 27029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-sin 15978  df-cos 15979  df-pi 15981  df-dvds 16166  df-prm 16585  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-cht 27035
This theorem is referenced by:  bposlem6  27228
  Copyright terms: Public domain W3C validator