MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efchtdvds Structured version   Visualization version   GIF version

Theorem efchtdvds 27220
Description: The exponentiated Chebyshev function forms a divisibility chain between any two points. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
efchtdvds ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵)))

Proof of Theorem efchtdvds
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chtcl 27170 . . . . . . 7 (𝐵 ∈ ℝ → (θ‘𝐵) ∈ ℝ)
213ad2ant2 1134 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘𝐵) ∈ ℝ)
32recnd 11318 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘𝐵) ∈ ℂ)
4 chtcl 27170 . . . . . . 7 (𝐴 ∈ ℝ → (θ‘𝐴) ∈ ℝ)
543ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘𝐴) ∈ ℝ)
65recnd 11318 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘𝐴) ∈ ℂ)
7 efsub 16148 . . . . 5 (((θ‘𝐵) ∈ ℂ ∧ (θ‘𝐴) ∈ ℂ) → (exp‘((θ‘𝐵) − (θ‘𝐴))) = ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))))
83, 6, 7syl2anc 583 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘((θ‘𝐵) − (θ‘𝐴))) = ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))))
9 chtfl 27210 . . . . . . . . 9 (𝐵 ∈ ℝ → (θ‘(⌊‘𝐵)) = (θ‘𝐵))
1093ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘(⌊‘𝐵)) = (θ‘𝐵))
11 chtfl 27210 . . . . . . . . 9 (𝐴 ∈ ℝ → (θ‘(⌊‘𝐴)) = (θ‘𝐴))
12113ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘(⌊‘𝐴)) = (θ‘𝐴))
1310, 12oveq12d 7466 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((θ‘(⌊‘𝐵)) − (θ‘(⌊‘𝐴))) = ((θ‘𝐵) − (θ‘𝐴)))
14 flword2 13864 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (⌊‘𝐵) ∈ (ℤ‘(⌊‘𝐴)))
15 chtdif 27219 . . . . . . . 8 ((⌊‘𝐵) ∈ (ℤ‘(⌊‘𝐴)) → ((θ‘(⌊‘𝐵)) − (θ‘(⌊‘𝐴))) = Σ𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)(log‘𝑝))
1614, 15syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((θ‘(⌊‘𝐵)) − (θ‘(⌊‘𝐴))) = Σ𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)(log‘𝑝))
1713, 16eqtr3d 2782 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((θ‘𝐵) − (θ‘𝐴)) = Σ𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)(log‘𝑝))
18 ssrab2 4103 . . . . . . . . 9 {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℝ
19 ax-resscn 11241 . . . . . . . . 9 ℝ ⊆ ℂ
2018, 19sstri 4018 . . . . . . . 8 {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℂ
2120a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℂ)
22 fveq2 6920 . . . . . . . . . . 11 (𝑥 = 𝑦 → (exp‘𝑥) = (exp‘𝑦))
2322eleq1d 2829 . . . . . . . . . 10 (𝑥 = 𝑦 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝑦) ∈ ℕ))
2423elrab 3708 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ))
25 fveq2 6920 . . . . . . . . . . 11 (𝑥 = 𝑧 → (exp‘𝑥) = (exp‘𝑧))
2625eleq1d 2829 . . . . . . . . . 10 (𝑥 = 𝑧 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝑧) ∈ ℕ))
2726elrab 3708 . . . . . . . . 9 (𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ))
28 fveq2 6920 . . . . . . . . . . 11 (𝑥 = (𝑦 + 𝑧) → (exp‘𝑥) = (exp‘(𝑦 + 𝑧)))
2928eleq1d 2829 . . . . . . . . . 10 (𝑥 = (𝑦 + 𝑧) → ((exp‘𝑥) ∈ ℕ ↔ (exp‘(𝑦 + 𝑧)) ∈ ℕ))
30 simpll 766 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑦 ∈ ℝ)
31 simprl 770 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑧 ∈ ℝ)
3230, 31readdcld 11319 . . . . . . . . . 10 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (𝑦 + 𝑧) ∈ ℝ)
3330recnd 11318 . . . . . . . . . . . 12 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑦 ∈ ℂ)
3431recnd 11318 . . . . . . . . . . . 12 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑧 ∈ ℂ)
35 efadd 16142 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑦 + 𝑧)) = ((exp‘𝑦) · (exp‘𝑧)))
3633, 34, 35syl2anc 583 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (exp‘(𝑦 + 𝑧)) = ((exp‘𝑦) · (exp‘𝑧)))
37 nnmulcl 12317 . . . . . . . . . . . 12 (((exp‘𝑦) ∈ ℕ ∧ (exp‘𝑧) ∈ ℕ) → ((exp‘𝑦) · (exp‘𝑧)) ∈ ℕ)
3837ad2ant2l 745 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → ((exp‘𝑦) · (exp‘𝑧)) ∈ ℕ)
3936, 38eqeltrd 2844 . . . . . . . . . 10 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (exp‘(𝑦 + 𝑧)) ∈ ℕ)
4029, 32, 39elrabd 3710 . . . . . . . . 9 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
4124, 27, 40syl2anb 597 . . . . . . . 8 ((𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ∧ 𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ}) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
4241adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ (𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ∧ 𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
43 fzfid 14024 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∈ Fin)
44 inss1 4258 . . . . . . . 8 ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ) ⊆ (((⌊‘𝐴) + 1)...(⌊‘𝐵))
45 ssfi 9240 . . . . . . . 8 (((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∈ Fin ∧ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ) ⊆ (((⌊‘𝐴) + 1)...(⌊‘𝐵))) → ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ) ∈ Fin)
4643, 44, 45sylancl 585 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ) ∈ Fin)
47 fveq2 6920 . . . . . . . . 9 (𝑥 = (log‘𝑝) → (exp‘𝑥) = (exp‘(log‘𝑝)))
4847eleq1d 2829 . . . . . . . 8 (𝑥 = (log‘𝑝) → ((exp‘𝑥) ∈ ℕ ↔ (exp‘(log‘𝑝)) ∈ ℕ))
49 simpr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ))
5049elin2d 4228 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → 𝑝 ∈ ℙ)
51 prmnn 16721 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
5250, 51syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → 𝑝 ∈ ℕ)
5352nnrpd 13097 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
5453relogcld 26683 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
5553reeflogd 26684 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → (exp‘(log‘𝑝)) = 𝑝)
5655, 52eqeltrd 2844 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → (exp‘(log‘𝑝)) ∈ ℕ)
5748, 54, 56elrabd 3710 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)) → (log‘𝑝) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
58 0re 11292 . . . . . . . . 9 0 ∈ ℝ
59 1nn 12304 . . . . . . . . 9 1 ∈ ℕ
60 fveq2 6920 . . . . . . . . . . . 12 (𝑥 = 0 → (exp‘𝑥) = (exp‘0))
61 ef0 16139 . . . . . . . . . . . 12 (exp‘0) = 1
6260, 61eqtrdi 2796 . . . . . . . . . . 11 (𝑥 = 0 → (exp‘𝑥) = 1)
6362eleq1d 2829 . . . . . . . . . 10 (𝑥 = 0 → ((exp‘𝑥) ∈ ℕ ↔ 1 ∈ ℕ))
6463elrab 3708 . . . . . . . . 9 (0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (0 ∈ ℝ ∧ 1 ∈ ℕ))
6558, 59, 64mpbir2an 710 . . . . . . . 8 0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ}
6665a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
6721, 42, 46, 57, 66fsumcllem 15780 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → Σ𝑝 ∈ ((((⌊‘𝐴) + 1)...(⌊‘𝐵)) ∩ ℙ)(log‘𝑝) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
6817, 67eqeltrd 2844 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((θ‘𝐵) − (θ‘𝐴)) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
69 fveq2 6920 . . . . . . . 8 (𝑥 = ((θ‘𝐵) − (θ‘𝐴)) → (exp‘𝑥) = (exp‘((θ‘𝐵) − (θ‘𝐴))))
7069eleq1d 2829 . . . . . . 7 (𝑥 = ((θ‘𝐵) − (θ‘𝐴)) → ((exp‘𝑥) ∈ ℕ ↔ (exp‘((θ‘𝐵) − (θ‘𝐴))) ∈ ℕ))
7170elrab 3708 . . . . . 6 (((θ‘𝐵) − (θ‘𝐴)) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (((θ‘𝐵) − (θ‘𝐴)) ∈ ℝ ∧ (exp‘((θ‘𝐵) − (θ‘𝐴))) ∈ ℕ))
7271simprbi 496 . . . . 5 (((θ‘𝐵) − (θ‘𝐴)) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} → (exp‘((θ‘𝐵) − (θ‘𝐴))) ∈ ℕ)
7368, 72syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘((θ‘𝐵) − (θ‘𝐴))) ∈ ℕ)
748, 73eqeltrrd 2845 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))) ∈ ℕ)
7574nnzd 12666 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))) ∈ ℤ)
76 efchtcl 27172 . . . . 5 (𝐴 ∈ ℝ → (exp‘(θ‘𝐴)) ∈ ℕ)
77763ad2ant1 1133 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ∈ ℕ)
7877nnzd 12666 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ∈ ℤ)
7977nnne0d 12343 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ≠ 0)
80 efchtcl 27172 . . . . 5 (𝐵 ∈ ℝ → (exp‘(θ‘𝐵)) ∈ ℕ)
81803ad2ant2 1134 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐵)) ∈ ℕ)
8281nnzd 12666 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐵)) ∈ ℤ)
83 dvdsval2 16305 . . 3 (((exp‘(θ‘𝐴)) ∈ ℤ ∧ (exp‘(θ‘𝐴)) ≠ 0 ∧ (exp‘(θ‘𝐵)) ∈ ℤ) → ((exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵)) ↔ ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))) ∈ ℤ))
8478, 79, 82, 83syl3anc 1371 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵)) ↔ ((exp‘(θ‘𝐵)) / (exp‘(θ‘𝐴))) ∈ ℤ))
8575, 84mpbird 257 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  {crab 3443  cin 3975  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cle 11325  cmin 11520   / cdiv 11947  cn 12293  cz 12639  cuz 12903  ...cfz 13567  cfl 13841  Σcsu 15734  expce 16109  cdvds 16302  cprime 16718  logclog 26614  θccht 27152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-prm 16719  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-cht 27158
This theorem is referenced by:  bposlem6  27351
  Copyright terms: Public domain W3C validator