MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1scvarpw Structured version   Visualization version   GIF version

Theorem evl1scvarpw 22248
Description: Univariate polynomial evaluation maps a multiple of an exponentiation of a variable to the multiple of an exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.)
Hypotheses
Ref Expression
evl1varpw.q 𝑄 = (eval1𝑅)
evl1varpw.w 𝑊 = (Poly1𝑅)
evl1varpw.g 𝐺 = (mulGrp‘𝑊)
evl1varpw.x 𝑋 = (var1𝑅)
evl1varpw.b 𝐵 = (Base‘𝑅)
evl1varpw.e = (.g𝐺)
evl1varpw.r (𝜑𝑅 ∈ CRing)
evl1varpw.n (𝜑𝑁 ∈ ℕ0)
evl1scvarpw.t1 × = ( ·𝑠𝑊)
evl1scvarpw.a (𝜑𝐴𝐵)
evl1scvarpw.s 𝑆 = (𝑅s 𝐵)
evl1scvarpw.t2 = (.r𝑆)
evl1scvarpw.m 𝑀 = (mulGrp‘𝑆)
evl1scvarpw.f 𝐹 = (.g𝑀)
Assertion
Ref Expression
evl1scvarpw (𝜑 → (𝑄‘(𝐴 × (𝑁 𝑋))) = ((𝐵 × {𝐴}) (𝑁𝐹(𝑄𝑋))))

Proof of Theorem evl1scvarpw
StepHypRef Expression
1 evl1varpw.r . . . . . 6 (𝜑𝑅 ∈ CRing)
2 evl1varpw.w . . . . . . 7 𝑊 = (Poly1𝑅)
32ply1assa 22082 . . . . . 6 (𝑅 ∈ CRing → 𝑊 ∈ AssAlg)
41, 3syl 17 . . . . 5 (𝜑𝑊 ∈ AssAlg)
5 evl1scvarpw.a . . . . . . 7 (𝜑𝐴𝐵)
6 evl1varpw.b . . . . . . 7 𝐵 = (Base‘𝑅)
75, 6eleqtrdi 2838 . . . . . 6 (𝜑𝐴 ∈ (Base‘𝑅))
82ply1sca 22135 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑊))
98eqcomd 2735 . . . . . . . 8 (𝑅 ∈ CRing → (Scalar‘𝑊) = 𝑅)
101, 9syl 17 . . . . . . 7 (𝜑 → (Scalar‘𝑊) = 𝑅)
1110fveq2d 6826 . . . . . 6 (𝜑 → (Base‘(Scalar‘𝑊)) = (Base‘𝑅))
127, 11eleqtrrd 2831 . . . . 5 (𝜑𝐴 ∈ (Base‘(Scalar‘𝑊)))
13 evl1varpw.g . . . . . . 7 𝐺 = (mulGrp‘𝑊)
14 eqid 2729 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
1513, 14mgpbas 20030 . . . . . 6 (Base‘𝑊) = (Base‘𝐺)
16 evl1varpw.e . . . . . 6 = (.g𝐺)
17 crngring 20130 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
181, 17syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
192ply1ring 22130 . . . . . . . 8 (𝑅 ∈ Ring → 𝑊 ∈ Ring)
2018, 19syl 17 . . . . . . 7 (𝜑𝑊 ∈ Ring)
2113ringmgp 20124 . . . . . . 7 (𝑊 ∈ Ring → 𝐺 ∈ Mnd)
2220, 21syl 17 . . . . . 6 (𝜑𝐺 ∈ Mnd)
23 evl1varpw.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
24 evl1varpw.x . . . . . . . 8 𝑋 = (var1𝑅)
2524, 2, 14vr1cl 22100 . . . . . . 7 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑊))
2618, 25syl 17 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝑊))
2715, 16, 22, 23, 26mulgnn0cld 18974 . . . . 5 (𝜑 → (𝑁 𝑋) ∈ (Base‘𝑊))
28 eqid 2729 . . . . . 6 (algSc‘𝑊) = (algSc‘𝑊)
29 eqid 2729 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
30 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
31 eqid 2729 . . . . . 6 (.r𝑊) = (.r𝑊)
32 evl1scvarpw.t1 . . . . . 6 × = ( ·𝑠𝑊)
3328, 29, 30, 14, 31, 32asclmul1 21793 . . . . 5 ((𝑊 ∈ AssAlg ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑁 𝑋) ∈ (Base‘𝑊)) → (((algSc‘𝑊)‘𝐴)(.r𝑊)(𝑁 𝑋)) = (𝐴 × (𝑁 𝑋)))
344, 12, 27, 33syl3anc 1373 . . . 4 (𝜑 → (((algSc‘𝑊)‘𝐴)(.r𝑊)(𝑁 𝑋)) = (𝐴 × (𝑁 𝑋)))
3534eqcomd 2735 . . 3 (𝜑 → (𝐴 × (𝑁 𝑋)) = (((algSc‘𝑊)‘𝐴)(.r𝑊)(𝑁 𝑋)))
3635fveq2d 6826 . 2 (𝜑 → (𝑄‘(𝐴 × (𝑁 𝑋))) = (𝑄‘(((algSc‘𝑊)‘𝐴)(.r𝑊)(𝑁 𝑋))))
37 evl1varpw.q . . . . 5 𝑄 = (eval1𝑅)
38 evl1scvarpw.s . . . . 5 𝑆 = (𝑅s 𝐵)
3937, 2, 38, 6evl1rhm 22217 . . . 4 (𝑅 ∈ CRing → 𝑄 ∈ (𝑊 RingHom 𝑆))
401, 39syl 17 . . 3 (𝜑𝑄 ∈ (𝑊 RingHom 𝑆))
412ply1lmod 22134 . . . . . 6 (𝑅 ∈ Ring → 𝑊 ∈ LMod)
4218, 41syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
4328, 29, 20, 42, 30, 14asclf 21789 . . . 4 (𝜑 → (algSc‘𝑊):(Base‘(Scalar‘𝑊))⟶(Base‘𝑊))
4443, 12ffvelcdmd 7019 . . 3 (𝜑 → ((algSc‘𝑊)‘𝐴) ∈ (Base‘𝑊))
45 evl1scvarpw.t2 . . . 4 = (.r𝑆)
4614, 31, 45rhmmul 20371 . . 3 ((𝑄 ∈ (𝑊 RingHom 𝑆) ∧ ((algSc‘𝑊)‘𝐴) ∈ (Base‘𝑊) ∧ (𝑁 𝑋) ∈ (Base‘𝑊)) → (𝑄‘(((algSc‘𝑊)‘𝐴)(.r𝑊)(𝑁 𝑋))) = ((𝑄‘((algSc‘𝑊)‘𝐴)) (𝑄‘(𝑁 𝑋))))
4740, 44, 27, 46syl3anc 1373 . 2 (𝜑 → (𝑄‘(((algSc‘𝑊)‘𝐴)(.r𝑊)(𝑁 𝑋))) = ((𝑄‘((algSc‘𝑊)‘𝐴)) (𝑄‘(𝑁 𝑋))))
4837, 2, 6, 28evl1sca 22219 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴𝐵) → (𝑄‘((algSc‘𝑊)‘𝐴)) = (𝐵 × {𝐴}))
491, 5, 48syl2anc 584 . . 3 (𝜑 → (𝑄‘((algSc‘𝑊)‘𝐴)) = (𝐵 × {𝐴}))
5037, 2, 13, 24, 6, 16, 1, 23evl1varpw 22246 . . . 4 (𝜑 → (𝑄‘(𝑁 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑄𝑋)))
51 evl1scvarpw.f . . . . . . . 8 𝐹 = (.g𝑀)
52 evl1scvarpw.m . . . . . . . . . 10 𝑀 = (mulGrp‘𝑆)
5338fveq2i 6825 . . . . . . . . . 10 (mulGrp‘𝑆) = (mulGrp‘(𝑅s 𝐵))
5452, 53eqtri 2752 . . . . . . . . 9 𝑀 = (mulGrp‘(𝑅s 𝐵))
5554fveq2i 6825 . . . . . . . 8 (.g𝑀) = (.g‘(mulGrp‘(𝑅s 𝐵)))
5651, 55eqtri 2752 . . . . . . 7 𝐹 = (.g‘(mulGrp‘(𝑅s 𝐵)))
5756a1i 11 . . . . . 6 (𝜑𝐹 = (.g‘(mulGrp‘(𝑅s 𝐵))))
5857eqcomd 2735 . . . . 5 (𝜑 → (.g‘(mulGrp‘(𝑅s 𝐵))) = 𝐹)
5958oveqd 7366 . . . 4 (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑄𝑋)) = (𝑁𝐹(𝑄𝑋)))
6050, 59eqtrd 2764 . . 3 (𝜑 → (𝑄‘(𝑁 𝑋)) = (𝑁𝐹(𝑄𝑋)))
6149, 60oveq12d 7367 . 2 (𝜑 → ((𝑄‘((algSc‘𝑊)‘𝐴)) (𝑄‘(𝑁 𝑋))) = ((𝐵 × {𝐴}) (𝑁𝐹(𝑄𝑋))))
6236, 47, 613eqtrd 2768 1 (𝜑 → (𝑄‘(𝐴 × (𝑁 𝑋))) = ((𝐵 × {𝐴}) (𝑁𝐹(𝑄𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4577   × cxp 5617  cfv 6482  (class class class)co 7349  0cn0 12384  Basecbs 17120  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  s cpws 17350  Mndcmnd 18608  .gcmg 18946  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354  LModclmod 20763  AssAlgcasa 21757  algSccascl 21759  var1cv1 22058  Poly1cpl1 22059  eval1ce1 22199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-lss 20835  df-lsp 20875  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-evls1 22200  df-evl1 22201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator