| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1scvarpw | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation maps a multiple of an exponentiation of a variable to the multiple of an exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
| Ref | Expression |
|---|---|
| evl1varpw.q | ⊢ 𝑄 = (eval1‘𝑅) |
| evl1varpw.w | ⊢ 𝑊 = (Poly1‘𝑅) |
| evl1varpw.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
| evl1varpw.x | ⊢ 𝑋 = (var1‘𝑅) |
| evl1varpw.b | ⊢ 𝐵 = (Base‘𝑅) |
| evl1varpw.e | ⊢ ↑ = (.g‘𝐺) |
| evl1varpw.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evl1varpw.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| evl1scvarpw.t1 | ⊢ × = ( ·𝑠 ‘𝑊) |
| evl1scvarpw.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| evl1scvarpw.s | ⊢ 𝑆 = (𝑅 ↑s 𝐵) |
| evl1scvarpw.t2 | ⊢ ∙ = (.r‘𝑆) |
| evl1scvarpw.m | ⊢ 𝑀 = (mulGrp‘𝑆) |
| evl1scvarpw.f | ⊢ 𝐹 = (.g‘𝑀) |
| Ref | Expression |
|---|---|
| evl1scvarpw | ⊢ (𝜑 → (𝑄‘(𝐴 × (𝑁 ↑ 𝑋))) = ((𝐵 × {𝐴}) ∙ (𝑁𝐹(𝑄‘𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1varpw.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 2 | evl1varpw.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑅) | |
| 3 | 2 | ply1assa 22201 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑊 ∈ AssAlg) |
| 4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ AssAlg) |
| 5 | evl1scvarpw.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 6 | evl1varpw.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | 5, 6 | eleqtrdi 2851 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑅)) |
| 8 | 2 | ply1sca 22254 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑊)) |
| 9 | 8 | eqcomd 2743 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (Scalar‘𝑊) = 𝑅) |
| 10 | 1, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (Scalar‘𝑊) = 𝑅) |
| 11 | 10 | fveq2d 6910 | . . . . . 6 ⊢ (𝜑 → (Base‘(Scalar‘𝑊)) = (Base‘𝑅)) |
| 12 | 7, 11 | eleqtrrd 2844 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Base‘(Scalar‘𝑊))) |
| 13 | evl1varpw.g | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘𝑊) | |
| 14 | eqid 2737 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 15 | 13, 14 | mgpbas 20142 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝐺) |
| 16 | evl1varpw.e | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
| 17 | crngring 20242 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 18 | 1, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 19 | 2 | ply1ring 22249 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ Ring) |
| 20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Ring) |
| 21 | 13 | ringmgp 20236 | . . . . . . 7 ⊢ (𝑊 ∈ Ring → 𝐺 ∈ Mnd) |
| 22 | 20, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 23 | evl1varpw.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 24 | evl1varpw.x | . . . . . . . 8 ⊢ 𝑋 = (var1‘𝑅) | |
| 25 | 24, 2, 14 | vr1cl 22219 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑊)) |
| 26 | 18, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
| 27 | 15, 16, 22, 23, 26 | mulgnn0cld 19113 | . . . . 5 ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) |
| 28 | eqid 2737 | . . . . . 6 ⊢ (algSc‘𝑊) = (algSc‘𝑊) | |
| 29 | eqid 2737 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 30 | eqid 2737 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 31 | eqid 2737 | . . . . . 6 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
| 32 | evl1scvarpw.t1 | . . . . . 6 ⊢ × = ( ·𝑠 ‘𝑊) | |
| 33 | 28, 29, 30, 14, 31, 32 | asclmul1 21906 | . . . . 5 ⊢ ((𝑊 ∈ AssAlg ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) → (((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋)) = (𝐴 × (𝑁 ↑ 𝑋))) |
| 34 | 4, 12, 27, 33 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋)) = (𝐴 × (𝑁 ↑ 𝑋))) |
| 35 | 34 | eqcomd 2743 | . . 3 ⊢ (𝜑 → (𝐴 × (𝑁 ↑ 𝑋)) = (((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋))) |
| 36 | 35 | fveq2d 6910 | . 2 ⊢ (𝜑 → (𝑄‘(𝐴 × (𝑁 ↑ 𝑋))) = (𝑄‘(((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋)))) |
| 37 | evl1varpw.q | . . . . 5 ⊢ 𝑄 = (eval1‘𝑅) | |
| 38 | evl1scvarpw.s | . . . . 5 ⊢ 𝑆 = (𝑅 ↑s 𝐵) | |
| 39 | 37, 2, 38, 6 | evl1rhm 22336 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑄 ∈ (𝑊 RingHom 𝑆)) |
| 40 | 1, 39 | syl 17 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (𝑊 RingHom 𝑆)) |
| 41 | 2 | ply1lmod 22253 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ LMod) |
| 42 | 18, 41 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 43 | 28, 29, 20, 42, 30, 14 | asclf 21902 | . . . 4 ⊢ (𝜑 → (algSc‘𝑊):(Base‘(Scalar‘𝑊))⟶(Base‘𝑊)) |
| 44 | 43, 12 | ffvelcdmd 7105 | . . 3 ⊢ (𝜑 → ((algSc‘𝑊)‘𝐴) ∈ (Base‘𝑊)) |
| 45 | evl1scvarpw.t2 | . . . 4 ⊢ ∙ = (.r‘𝑆) | |
| 46 | 14, 31, 45 | rhmmul 20486 | . . 3 ⊢ ((𝑄 ∈ (𝑊 RingHom 𝑆) ∧ ((algSc‘𝑊)‘𝐴) ∈ (Base‘𝑊) ∧ (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) → (𝑄‘(((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋))) = ((𝑄‘((algSc‘𝑊)‘𝐴)) ∙ (𝑄‘(𝑁 ↑ 𝑋)))) |
| 47 | 40, 44, 27, 46 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑄‘(((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋))) = ((𝑄‘((algSc‘𝑊)‘𝐴)) ∙ (𝑄‘(𝑁 ↑ 𝑋)))) |
| 48 | 37, 2, 6, 28 | evl1sca 22338 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐵) → (𝑄‘((algSc‘𝑊)‘𝐴)) = (𝐵 × {𝐴})) |
| 49 | 1, 5, 48 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑄‘((algSc‘𝑊)‘𝐴)) = (𝐵 × {𝐴})) |
| 50 | 37, 2, 13, 24, 6, 16, 1, 23 | evl1varpw 22365 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) |
| 51 | evl1scvarpw.f | . . . . . . . 8 ⊢ 𝐹 = (.g‘𝑀) | |
| 52 | evl1scvarpw.m | . . . . . . . . . 10 ⊢ 𝑀 = (mulGrp‘𝑆) | |
| 53 | 38 | fveq2i 6909 | . . . . . . . . . 10 ⊢ (mulGrp‘𝑆) = (mulGrp‘(𝑅 ↑s 𝐵)) |
| 54 | 52, 53 | eqtri 2765 | . . . . . . . . 9 ⊢ 𝑀 = (mulGrp‘(𝑅 ↑s 𝐵)) |
| 55 | 54 | fveq2i 6909 | . . . . . . . 8 ⊢ (.g‘𝑀) = (.g‘(mulGrp‘(𝑅 ↑s 𝐵))) |
| 56 | 51, 55 | eqtri 2765 | . . . . . . 7 ⊢ 𝐹 = (.g‘(mulGrp‘(𝑅 ↑s 𝐵))) |
| 57 | 56 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (.g‘(mulGrp‘(𝑅 ↑s 𝐵)))) |
| 58 | 57 | eqcomd 2743 | . . . . 5 ⊢ (𝜑 → (.g‘(mulGrp‘(𝑅 ↑s 𝐵))) = 𝐹) |
| 59 | 58 | oveqd 7448 | . . . 4 ⊢ (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋)) = (𝑁𝐹(𝑄‘𝑋))) |
| 60 | 50, 59 | eqtrd 2777 | . . 3 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁𝐹(𝑄‘𝑋))) |
| 61 | 49, 60 | oveq12d 7449 | . 2 ⊢ (𝜑 → ((𝑄‘((algSc‘𝑊)‘𝐴)) ∙ (𝑄‘(𝑁 ↑ 𝑋))) = ((𝐵 × {𝐴}) ∙ (𝑁𝐹(𝑄‘𝑋)))) |
| 62 | 36, 47, 61 | 3eqtrd 2781 | 1 ⊢ (𝜑 → (𝑄‘(𝐴 × (𝑁 ↑ 𝑋))) = ((𝐵 × {𝐴}) ∙ (𝑁𝐹(𝑄‘𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {csn 4626 × cxp 5683 ‘cfv 6561 (class class class)co 7431 ℕ0cn0 12526 Basecbs 17247 .rcmulr 17298 Scalarcsca 17300 ·𝑠 cvsca 17301 ↑s cpws 17491 Mndcmnd 18747 .gcmg 19085 mulGrpcmgp 20137 Ringcrg 20230 CRingccrg 20231 RingHom crh 20469 LModclmod 20858 AssAlgcasa 21870 algSccascl 21872 var1cv1 22177 Poly1cpl1 22178 eval1ce1 22318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-ghm 19231 df-cntz 19335 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-srg 20184 df-ring 20232 df-cring 20233 df-rhm 20472 df-subrng 20546 df-subrg 20570 df-lmod 20860 df-lss 20930 df-lsp 20970 df-assa 21873 df-asp 21874 df-ascl 21875 df-psr 21929 df-mvr 21930 df-mpl 21931 df-opsr 21933 df-evls 22098 df-evl 22099 df-psr1 22181 df-vr1 22182 df-ply1 22183 df-evls1 22319 df-evl1 22320 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |