| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1scvarpw | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation maps a multiple of an exponentiation of a variable to the multiple of an exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
| Ref | Expression |
|---|---|
| evl1varpw.q | ⊢ 𝑄 = (eval1‘𝑅) |
| evl1varpw.w | ⊢ 𝑊 = (Poly1‘𝑅) |
| evl1varpw.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
| evl1varpw.x | ⊢ 𝑋 = (var1‘𝑅) |
| evl1varpw.b | ⊢ 𝐵 = (Base‘𝑅) |
| evl1varpw.e | ⊢ ↑ = (.g‘𝐺) |
| evl1varpw.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evl1varpw.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| evl1scvarpw.t1 | ⊢ × = ( ·𝑠 ‘𝑊) |
| evl1scvarpw.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| evl1scvarpw.s | ⊢ 𝑆 = (𝑅 ↑s 𝐵) |
| evl1scvarpw.t2 | ⊢ ∙ = (.r‘𝑆) |
| evl1scvarpw.m | ⊢ 𝑀 = (mulGrp‘𝑆) |
| evl1scvarpw.f | ⊢ 𝐹 = (.g‘𝑀) |
| Ref | Expression |
|---|---|
| evl1scvarpw | ⊢ (𝜑 → (𝑄‘(𝐴 × (𝑁 ↑ 𝑋))) = ((𝐵 × {𝐴}) ∙ (𝑁𝐹(𝑄‘𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1varpw.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 2 | evl1varpw.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑅) | |
| 3 | 2 | ply1assa 22112 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑊 ∈ AssAlg) |
| 4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ AssAlg) |
| 5 | evl1scvarpw.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 6 | evl1varpw.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | 5, 6 | eleqtrdi 2841 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑅)) |
| 8 | 2 | ply1sca 22165 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑊)) |
| 9 | 8 | eqcomd 2737 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (Scalar‘𝑊) = 𝑅) |
| 10 | 1, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (Scalar‘𝑊) = 𝑅) |
| 11 | 10 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → (Base‘(Scalar‘𝑊)) = (Base‘𝑅)) |
| 12 | 7, 11 | eleqtrrd 2834 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Base‘(Scalar‘𝑊))) |
| 13 | evl1varpw.g | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘𝑊) | |
| 14 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 15 | 13, 14 | mgpbas 20063 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝐺) |
| 16 | evl1varpw.e | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
| 17 | crngring 20163 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 18 | 1, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 19 | 2 | ply1ring 22160 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ Ring) |
| 20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Ring) |
| 21 | 13 | ringmgp 20157 | . . . . . . 7 ⊢ (𝑊 ∈ Ring → 𝐺 ∈ Mnd) |
| 22 | 20, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 23 | evl1varpw.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 24 | evl1varpw.x | . . . . . . . 8 ⊢ 𝑋 = (var1‘𝑅) | |
| 25 | 24, 2, 14 | vr1cl 22130 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑊)) |
| 26 | 18, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
| 27 | 15, 16, 22, 23, 26 | mulgnn0cld 19008 | . . . . 5 ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) |
| 28 | eqid 2731 | . . . . . 6 ⊢ (algSc‘𝑊) = (algSc‘𝑊) | |
| 29 | eqid 2731 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 30 | eqid 2731 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 31 | eqid 2731 | . . . . . 6 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
| 32 | evl1scvarpw.t1 | . . . . . 6 ⊢ × = ( ·𝑠 ‘𝑊) | |
| 33 | 28, 29, 30, 14, 31, 32 | asclmul1 21823 | . . . . 5 ⊢ ((𝑊 ∈ AssAlg ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) → (((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋)) = (𝐴 × (𝑁 ↑ 𝑋))) |
| 34 | 4, 12, 27, 33 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋)) = (𝐴 × (𝑁 ↑ 𝑋))) |
| 35 | 34 | eqcomd 2737 | . . 3 ⊢ (𝜑 → (𝐴 × (𝑁 ↑ 𝑋)) = (((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋))) |
| 36 | 35 | fveq2d 6826 | . 2 ⊢ (𝜑 → (𝑄‘(𝐴 × (𝑁 ↑ 𝑋))) = (𝑄‘(((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋)))) |
| 37 | evl1varpw.q | . . . . 5 ⊢ 𝑄 = (eval1‘𝑅) | |
| 38 | evl1scvarpw.s | . . . . 5 ⊢ 𝑆 = (𝑅 ↑s 𝐵) | |
| 39 | 37, 2, 38, 6 | evl1rhm 22247 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑄 ∈ (𝑊 RingHom 𝑆)) |
| 40 | 1, 39 | syl 17 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (𝑊 RingHom 𝑆)) |
| 41 | 2 | ply1lmod 22164 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ LMod) |
| 42 | 18, 41 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 43 | 28, 29, 20, 42, 30, 14 | asclf 21819 | . . . 4 ⊢ (𝜑 → (algSc‘𝑊):(Base‘(Scalar‘𝑊))⟶(Base‘𝑊)) |
| 44 | 43, 12 | ffvelcdmd 7018 | . . 3 ⊢ (𝜑 → ((algSc‘𝑊)‘𝐴) ∈ (Base‘𝑊)) |
| 45 | evl1scvarpw.t2 | . . . 4 ⊢ ∙ = (.r‘𝑆) | |
| 46 | 14, 31, 45 | rhmmul 20403 | . . 3 ⊢ ((𝑄 ∈ (𝑊 RingHom 𝑆) ∧ ((algSc‘𝑊)‘𝐴) ∈ (Base‘𝑊) ∧ (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) → (𝑄‘(((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋))) = ((𝑄‘((algSc‘𝑊)‘𝐴)) ∙ (𝑄‘(𝑁 ↑ 𝑋)))) |
| 47 | 40, 44, 27, 46 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑄‘(((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋))) = ((𝑄‘((algSc‘𝑊)‘𝐴)) ∙ (𝑄‘(𝑁 ↑ 𝑋)))) |
| 48 | 37, 2, 6, 28 | evl1sca 22249 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐵) → (𝑄‘((algSc‘𝑊)‘𝐴)) = (𝐵 × {𝐴})) |
| 49 | 1, 5, 48 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑄‘((algSc‘𝑊)‘𝐴)) = (𝐵 × {𝐴})) |
| 50 | 37, 2, 13, 24, 6, 16, 1, 23 | evl1varpw 22276 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) |
| 51 | evl1scvarpw.f | . . . . . . . 8 ⊢ 𝐹 = (.g‘𝑀) | |
| 52 | evl1scvarpw.m | . . . . . . . . . 10 ⊢ 𝑀 = (mulGrp‘𝑆) | |
| 53 | 38 | fveq2i 6825 | . . . . . . . . . 10 ⊢ (mulGrp‘𝑆) = (mulGrp‘(𝑅 ↑s 𝐵)) |
| 54 | 52, 53 | eqtri 2754 | . . . . . . . . 9 ⊢ 𝑀 = (mulGrp‘(𝑅 ↑s 𝐵)) |
| 55 | 54 | fveq2i 6825 | . . . . . . . 8 ⊢ (.g‘𝑀) = (.g‘(mulGrp‘(𝑅 ↑s 𝐵))) |
| 56 | 51, 55 | eqtri 2754 | . . . . . . 7 ⊢ 𝐹 = (.g‘(mulGrp‘(𝑅 ↑s 𝐵))) |
| 57 | 56 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (.g‘(mulGrp‘(𝑅 ↑s 𝐵)))) |
| 58 | 57 | eqcomd 2737 | . . . . 5 ⊢ (𝜑 → (.g‘(mulGrp‘(𝑅 ↑s 𝐵))) = 𝐹) |
| 59 | 58 | oveqd 7363 | . . . 4 ⊢ (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋)) = (𝑁𝐹(𝑄‘𝑋))) |
| 60 | 50, 59 | eqtrd 2766 | . . 3 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁𝐹(𝑄‘𝑋))) |
| 61 | 49, 60 | oveq12d 7364 | . 2 ⊢ (𝜑 → ((𝑄‘((algSc‘𝑊)‘𝐴)) ∙ (𝑄‘(𝑁 ↑ 𝑋))) = ((𝐵 × {𝐴}) ∙ (𝑁𝐹(𝑄‘𝑋)))) |
| 62 | 36, 47, 61 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (𝑄‘(𝐴 × (𝑁 ↑ 𝑋))) = ((𝐵 × {𝐴}) ∙ (𝑁𝐹(𝑄‘𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4573 × cxp 5612 ‘cfv 6481 (class class class)co 7346 ℕ0cn0 12381 Basecbs 17120 .rcmulr 17162 Scalarcsca 17164 ·𝑠 cvsca 17165 ↑s cpws 17350 Mndcmnd 18642 .gcmg 18980 mulGrpcmgp 20058 Ringcrg 20151 CRingccrg 20152 RingHom crh 20387 LModclmod 20793 AssAlgcasa 21787 algSccascl 21789 var1cv1 22088 Poly1cpl1 22089 eval1ce1 22229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-srg 20105 df-ring 20153 df-cring 20154 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-lmod 20795 df-lss 20865 df-lsp 20905 df-assa 21790 df-asp 21791 df-ascl 21792 df-psr 21846 df-mvr 21847 df-mpl 21848 df-opsr 21850 df-evls 22009 df-evl 22010 df-psr1 22092 df-vr1 22093 df-ply1 22094 df-evls1 22230 df-evl1 22231 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |