Step | Hyp | Ref
| Expression |
1 | | evl1varpw.r |
. . . . . 6
β’ (π β π
β CRing) |
2 | | evl1varpw.w |
. . . . . . 7
β’ π = (Poly1βπ
) |
3 | 2 | ply1assa 21586 |
. . . . . 6
β’ (π
β CRing β π β AssAlg) |
4 | 1, 3 | syl 17 |
. . . . 5
β’ (π β π β AssAlg) |
5 | | evl1scvarpw.a |
. . . . . . 7
β’ (π β π΄ β π΅) |
6 | | evl1varpw.b |
. . . . . . 7
β’ π΅ = (Baseβπ
) |
7 | 5, 6 | eleqtrdi 2848 |
. . . . . 6
β’ (π β π΄ β (Baseβπ
)) |
8 | 2 | ply1sca 21640 |
. . . . . . . . 9
β’ (π
β CRing β π
= (Scalarβπ)) |
9 | 8 | eqcomd 2743 |
. . . . . . . 8
β’ (π
β CRing β
(Scalarβπ) = π
) |
10 | 1, 9 | syl 17 |
. . . . . . 7
β’ (π β (Scalarβπ) = π
) |
11 | 10 | fveq2d 6851 |
. . . . . 6
β’ (π β
(Baseβ(Scalarβπ)) = (Baseβπ
)) |
12 | 7, 11 | eleqtrrd 2841 |
. . . . 5
β’ (π β π΄ β (Baseβ(Scalarβπ))) |
13 | | evl1varpw.g |
. . . . . . 7
β’ πΊ = (mulGrpβπ) |
14 | | eqid 2737 |
. . . . . . 7
β’
(Baseβπ) =
(Baseβπ) |
15 | 13, 14 | mgpbas 19909 |
. . . . . 6
β’
(Baseβπ) =
(BaseβπΊ) |
16 | | evl1varpw.e |
. . . . . 6
β’ β =
(.gβπΊ) |
17 | | crngring 19983 |
. . . . . . . . 9
β’ (π
β CRing β π
β Ring) |
18 | 1, 17 | syl 17 |
. . . . . . . 8
β’ (π β π
β Ring) |
19 | 2 | ply1ring 21635 |
. . . . . . . 8
β’ (π
β Ring β π β Ring) |
20 | 18, 19 | syl 17 |
. . . . . . 7
β’ (π β π β Ring) |
21 | 13 | ringmgp 19977 |
. . . . . . 7
β’ (π β Ring β πΊ β Mnd) |
22 | 20, 21 | syl 17 |
. . . . . 6
β’ (π β πΊ β Mnd) |
23 | | evl1varpw.n |
. . . . . 6
β’ (π β π β
β0) |
24 | | evl1varpw.x |
. . . . . . . 8
β’ π = (var1βπ
) |
25 | 24, 2, 14 | vr1cl 21604 |
. . . . . . 7
β’ (π
β Ring β π β (Baseβπ)) |
26 | 18, 25 | syl 17 |
. . . . . 6
β’ (π β π β (Baseβπ)) |
27 | 15, 16, 22, 23, 26 | mulgnn0cld 18904 |
. . . . 5
β’ (π β (π β π) β (Baseβπ)) |
28 | | eqid 2737 |
. . . . . 6
β’
(algScβπ) =
(algScβπ) |
29 | | eqid 2737 |
. . . . . 6
β’
(Scalarβπ) =
(Scalarβπ) |
30 | | eqid 2737 |
. . . . . 6
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
31 | | eqid 2737 |
. . . . . 6
β’
(.rβπ) = (.rβπ) |
32 | | evl1scvarpw.t1 |
. . . . . 6
β’ Γ = (
Β·π βπ) |
33 | 28, 29, 30, 14, 31, 32 | asclmul1 21305 |
. . . . 5
β’ ((π β AssAlg β§ π΄ β
(Baseβ(Scalarβπ)) β§ (π β π) β (Baseβπ)) β (((algScβπ)βπ΄)(.rβπ)(π β π)) = (π΄ Γ (π β π))) |
34 | 4, 12, 27, 33 | syl3anc 1372 |
. . . 4
β’ (π β (((algScβπ)βπ΄)(.rβπ)(π β π)) = (π΄ Γ (π β π))) |
35 | 34 | eqcomd 2743 |
. . 3
β’ (π β (π΄ Γ (π β π)) = (((algScβπ)βπ΄)(.rβπ)(π β π))) |
36 | 35 | fveq2d 6851 |
. 2
β’ (π β (πβ(π΄ Γ (π β π))) = (πβ(((algScβπ)βπ΄)(.rβπ)(π β π)))) |
37 | | evl1varpw.q |
. . . . 5
β’ π = (eval1βπ
) |
38 | | evl1scvarpw.s |
. . . . 5
β’ π = (π
βs π΅) |
39 | 37, 2, 38, 6 | evl1rhm 21714 |
. . . 4
β’ (π
β CRing β π β (π RingHom π)) |
40 | 1, 39 | syl 17 |
. . 3
β’ (π β π β (π RingHom π)) |
41 | 2 | ply1lmod 21639 |
. . . . . 6
β’ (π
β Ring β π β LMod) |
42 | 18, 41 | syl 17 |
. . . . 5
β’ (π β π β LMod) |
43 | 28, 29, 20, 42, 30, 14 | asclf 21301 |
. . . 4
β’ (π β (algScβπ):(Baseβ(Scalarβπ))βΆ(Baseβπ)) |
44 | 43, 12 | ffvelcdmd 7041 |
. . 3
β’ (π β ((algScβπ)βπ΄) β (Baseβπ)) |
45 | | evl1scvarpw.t2 |
. . . 4
β’ β =
(.rβπ) |
46 | 14, 31, 45 | rhmmul 20168 |
. . 3
β’ ((π β (π RingHom π) β§ ((algScβπ)βπ΄) β (Baseβπ) β§ (π β π) β (Baseβπ)) β (πβ(((algScβπ)βπ΄)(.rβπ)(π β π))) = ((πβ((algScβπ)βπ΄)) β (πβ(π β π)))) |
47 | 40, 44, 27, 46 | syl3anc 1372 |
. 2
β’ (π β (πβ(((algScβπ)βπ΄)(.rβπ)(π β π))) = ((πβ((algScβπ)βπ΄)) β (πβ(π β π)))) |
48 | 37, 2, 6, 28 | evl1sca 21716 |
. . . 4
β’ ((π
β CRing β§ π΄ β π΅) β (πβ((algScβπ)βπ΄)) = (π΅ Γ {π΄})) |
49 | 1, 5, 48 | syl2anc 585 |
. . 3
β’ (π β (πβ((algScβπ)βπ΄)) = (π΅ Γ {π΄})) |
50 | 37, 2, 13, 24, 6, 16, 1, 23 | evl1varpw 21743 |
. . . 4
β’ (π β (πβ(π β π)) = (π(.gβ(mulGrpβ(π
βs π΅)))(πβπ))) |
51 | | evl1scvarpw.f |
. . . . . . . 8
β’ πΉ = (.gβπ) |
52 | | evl1scvarpw.m |
. . . . . . . . . 10
β’ π = (mulGrpβπ) |
53 | 38 | fveq2i 6850 |
. . . . . . . . . 10
β’
(mulGrpβπ) =
(mulGrpβ(π
βs π΅)) |
54 | 52, 53 | eqtri 2765 |
. . . . . . . . 9
β’ π = (mulGrpβ(π
βs π΅)) |
55 | 54 | fveq2i 6850 |
. . . . . . . 8
β’
(.gβπ) =
(.gβ(mulGrpβ(π
βs π΅))) |
56 | 51, 55 | eqtri 2765 |
. . . . . . 7
β’ πΉ =
(.gβ(mulGrpβ(π
βs π΅))) |
57 | 56 | a1i 11 |
. . . . . 6
β’ (π β πΉ = (.gβ(mulGrpβ(π
βs π΅)))) |
58 | 57 | eqcomd 2743 |
. . . . 5
β’ (π β
(.gβ(mulGrpβ(π
βs π΅))) = πΉ) |
59 | 58 | oveqd 7379 |
. . . 4
β’ (π β (π(.gβ(mulGrpβ(π
βs π΅)))(πβπ)) = (ππΉ(πβπ))) |
60 | 50, 59 | eqtrd 2777 |
. . 3
β’ (π β (πβ(π β π)) = (ππΉ(πβπ))) |
61 | 49, 60 | oveq12d 7380 |
. 2
β’ (π β ((πβ((algScβπ)βπ΄)) β (πβ(π β π))) = ((π΅ Γ {π΄}) β (ππΉ(πβπ)))) |
62 | 36, 47, 61 | 3eqtrd 2781 |
1
β’ (π β (πβ(π΄ Γ (π β π))) = ((π΅ Γ {π΄}) β (ππΉ(πβπ)))) |