![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1scvarpw | Structured version Visualization version GIF version |
Description: Univariate polynomial evaluation maps a multiple of an exponentiation of a variable to the multiple of an exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
Ref | Expression |
---|---|
evl1varpw.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1varpw.w | ⊢ 𝑊 = (Poly1‘𝑅) |
evl1varpw.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
evl1varpw.x | ⊢ 𝑋 = (var1‘𝑅) |
evl1varpw.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1varpw.e | ⊢ ↑ = (.g‘𝐺) |
evl1varpw.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1varpw.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
evl1scvarpw.t1 | ⊢ × = ( ·𝑠 ‘𝑊) |
evl1scvarpw.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
evl1scvarpw.s | ⊢ 𝑆 = (𝑅 ↑s 𝐵) |
evl1scvarpw.t2 | ⊢ ∙ = (.r‘𝑆) |
evl1scvarpw.m | ⊢ 𝑀 = (mulGrp‘𝑆) |
evl1scvarpw.f | ⊢ 𝐹 = (.g‘𝑀) |
Ref | Expression |
---|---|
evl1scvarpw | ⊢ (𝜑 → (𝑄‘(𝐴 × (𝑁 ↑ 𝑋))) = ((𝐵 × {𝐴}) ∙ (𝑁𝐹(𝑄‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1varpw.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
2 | evl1varpw.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑅) | |
3 | 2 | ply1assa 22217 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑊 ∈ AssAlg) |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ AssAlg) |
5 | evl1scvarpw.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
6 | evl1varpw.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
7 | 5, 6 | eleqtrdi 2849 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑅)) |
8 | 2 | ply1sca 22270 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑊)) |
9 | 8 | eqcomd 2741 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (Scalar‘𝑊) = 𝑅) |
10 | 1, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (Scalar‘𝑊) = 𝑅) |
11 | 10 | fveq2d 6911 | . . . . . 6 ⊢ (𝜑 → (Base‘(Scalar‘𝑊)) = (Base‘𝑅)) |
12 | 7, 11 | eleqtrrd 2842 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Base‘(Scalar‘𝑊))) |
13 | evl1varpw.g | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘𝑊) | |
14 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
15 | 13, 14 | mgpbas 20158 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝐺) |
16 | evl1varpw.e | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
17 | crngring 20263 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
18 | 1, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) |
19 | 2 | ply1ring 22265 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ Ring) |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Ring) |
21 | 13 | ringmgp 20257 | . . . . . . 7 ⊢ (𝑊 ∈ Ring → 𝐺 ∈ Mnd) |
22 | 20, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
23 | evl1varpw.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
24 | evl1varpw.x | . . . . . . . 8 ⊢ 𝑋 = (var1‘𝑅) | |
25 | 24, 2, 14 | vr1cl 22235 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑊)) |
26 | 18, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
27 | 15, 16, 22, 23, 26 | mulgnn0cld 19126 | . . . . 5 ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) |
28 | eqid 2735 | . . . . . 6 ⊢ (algSc‘𝑊) = (algSc‘𝑊) | |
29 | eqid 2735 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
30 | eqid 2735 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
31 | eqid 2735 | . . . . . 6 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
32 | evl1scvarpw.t1 | . . . . . 6 ⊢ × = ( ·𝑠 ‘𝑊) | |
33 | 28, 29, 30, 14, 31, 32 | asclmul1 21924 | . . . . 5 ⊢ ((𝑊 ∈ AssAlg ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) → (((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋)) = (𝐴 × (𝑁 ↑ 𝑋))) |
34 | 4, 12, 27, 33 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋)) = (𝐴 × (𝑁 ↑ 𝑋))) |
35 | 34 | eqcomd 2741 | . . 3 ⊢ (𝜑 → (𝐴 × (𝑁 ↑ 𝑋)) = (((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋))) |
36 | 35 | fveq2d 6911 | . 2 ⊢ (𝜑 → (𝑄‘(𝐴 × (𝑁 ↑ 𝑋))) = (𝑄‘(((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋)))) |
37 | evl1varpw.q | . . . . 5 ⊢ 𝑄 = (eval1‘𝑅) | |
38 | evl1scvarpw.s | . . . . 5 ⊢ 𝑆 = (𝑅 ↑s 𝐵) | |
39 | 37, 2, 38, 6 | evl1rhm 22352 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑄 ∈ (𝑊 RingHom 𝑆)) |
40 | 1, 39 | syl 17 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (𝑊 RingHom 𝑆)) |
41 | 2 | ply1lmod 22269 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ LMod) |
42 | 18, 41 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
43 | 28, 29, 20, 42, 30, 14 | asclf 21920 | . . . 4 ⊢ (𝜑 → (algSc‘𝑊):(Base‘(Scalar‘𝑊))⟶(Base‘𝑊)) |
44 | 43, 12 | ffvelcdmd 7105 | . . 3 ⊢ (𝜑 → ((algSc‘𝑊)‘𝐴) ∈ (Base‘𝑊)) |
45 | evl1scvarpw.t2 | . . . 4 ⊢ ∙ = (.r‘𝑆) | |
46 | 14, 31, 45 | rhmmul 20503 | . . 3 ⊢ ((𝑄 ∈ (𝑊 RingHom 𝑆) ∧ ((algSc‘𝑊)‘𝐴) ∈ (Base‘𝑊) ∧ (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) → (𝑄‘(((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋))) = ((𝑄‘((algSc‘𝑊)‘𝐴)) ∙ (𝑄‘(𝑁 ↑ 𝑋)))) |
47 | 40, 44, 27, 46 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑄‘(((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋))) = ((𝑄‘((algSc‘𝑊)‘𝐴)) ∙ (𝑄‘(𝑁 ↑ 𝑋)))) |
48 | 37, 2, 6, 28 | evl1sca 22354 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐵) → (𝑄‘((algSc‘𝑊)‘𝐴)) = (𝐵 × {𝐴})) |
49 | 1, 5, 48 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑄‘((algSc‘𝑊)‘𝐴)) = (𝐵 × {𝐴})) |
50 | 37, 2, 13, 24, 6, 16, 1, 23 | evl1varpw 22381 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) |
51 | evl1scvarpw.f | . . . . . . . 8 ⊢ 𝐹 = (.g‘𝑀) | |
52 | evl1scvarpw.m | . . . . . . . . . 10 ⊢ 𝑀 = (mulGrp‘𝑆) | |
53 | 38 | fveq2i 6910 | . . . . . . . . . 10 ⊢ (mulGrp‘𝑆) = (mulGrp‘(𝑅 ↑s 𝐵)) |
54 | 52, 53 | eqtri 2763 | . . . . . . . . 9 ⊢ 𝑀 = (mulGrp‘(𝑅 ↑s 𝐵)) |
55 | 54 | fveq2i 6910 | . . . . . . . 8 ⊢ (.g‘𝑀) = (.g‘(mulGrp‘(𝑅 ↑s 𝐵))) |
56 | 51, 55 | eqtri 2763 | . . . . . . 7 ⊢ 𝐹 = (.g‘(mulGrp‘(𝑅 ↑s 𝐵))) |
57 | 56 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (.g‘(mulGrp‘(𝑅 ↑s 𝐵)))) |
58 | 57 | eqcomd 2741 | . . . . 5 ⊢ (𝜑 → (.g‘(mulGrp‘(𝑅 ↑s 𝐵))) = 𝐹) |
59 | 58 | oveqd 7448 | . . . 4 ⊢ (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋)) = (𝑁𝐹(𝑄‘𝑋))) |
60 | 50, 59 | eqtrd 2775 | . . 3 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁𝐹(𝑄‘𝑋))) |
61 | 49, 60 | oveq12d 7449 | . 2 ⊢ (𝜑 → ((𝑄‘((algSc‘𝑊)‘𝐴)) ∙ (𝑄‘(𝑁 ↑ 𝑋))) = ((𝐵 × {𝐴}) ∙ (𝑁𝐹(𝑄‘𝑋)))) |
62 | 36, 47, 61 | 3eqtrd 2779 | 1 ⊢ (𝜑 → (𝑄‘(𝐴 × (𝑁 ↑ 𝑋))) = ((𝐵 × {𝐴}) ∙ (𝑁𝐹(𝑄‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {csn 4631 × cxp 5687 ‘cfv 6563 (class class class)co 7431 ℕ0cn0 12524 Basecbs 17245 .rcmulr 17299 Scalarcsca 17301 ·𝑠 cvsca 17302 ↑s cpws 17493 Mndcmnd 18760 .gcmg 19098 mulGrpcmgp 20152 Ringcrg 20251 CRingccrg 20252 RingHom crh 20486 LModclmod 20875 AssAlgcasa 21888 algSccascl 21890 var1cv1 22193 Poly1cpl1 22194 eval1ce1 22334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-srg 20205 df-ring 20253 df-cring 20254 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-lmod 20877 df-lss 20948 df-lsp 20988 df-assa 21891 df-asp 21892 df-ascl 21893 df-psr 21947 df-mvr 21948 df-mpl 21949 df-opsr 21951 df-evls 22116 df-evl 22117 df-psr1 22197 df-vr1 22198 df-ply1 22199 df-evls1 22335 df-evl1 22336 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |