![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1scvarpw | Structured version Visualization version GIF version |
Description: Univariate polynomial evaluation maps a multiple of an exponentiation of a variable to the multiple of an exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
Ref | Expression |
---|---|
evl1varpw.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1varpw.w | ⊢ 𝑊 = (Poly1‘𝑅) |
evl1varpw.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
evl1varpw.x | ⊢ 𝑋 = (var1‘𝑅) |
evl1varpw.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1varpw.e | ⊢ ↑ = (.g‘𝐺) |
evl1varpw.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1varpw.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
evl1scvarpw.t1 | ⊢ × = ( ·𝑠 ‘𝑊) |
evl1scvarpw.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
evl1scvarpw.s | ⊢ 𝑆 = (𝑅 ↑s 𝐵) |
evl1scvarpw.t2 | ⊢ ∙ = (.r‘𝑆) |
evl1scvarpw.m | ⊢ 𝑀 = (mulGrp‘𝑆) |
evl1scvarpw.f | ⊢ 𝐹 = (.g‘𝑀) |
Ref | Expression |
---|---|
evl1scvarpw | ⊢ (𝜑 → (𝑄‘(𝐴 × (𝑁 ↑ 𝑋))) = ((𝐵 × {𝐴}) ∙ (𝑁𝐹(𝑄‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1varpw.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
2 | evl1varpw.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑅) | |
3 | 2 | ply1assa 20070 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑊 ∈ AssAlg) |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ AssAlg) |
5 | evl1scvarpw.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
6 | evl1varpw.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
7 | 5, 6 | syl6eleq 2876 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑅)) |
8 | 2 | ply1sca 20124 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑊)) |
9 | 8 | eqcomd 2784 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (Scalar‘𝑊) = 𝑅) |
10 | 1, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (Scalar‘𝑊) = 𝑅) |
11 | 10 | fveq2d 6503 | . . . . . 6 ⊢ (𝜑 → (Base‘(Scalar‘𝑊)) = (Base‘𝑅)) |
12 | 7, 11 | eleqtrrd 2869 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Base‘(Scalar‘𝑊))) |
13 | crngring 19031 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
14 | 1, 13 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) |
15 | 2 | ply1ring 20119 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ Ring) |
16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Ring) |
17 | evl1varpw.g | . . . . . . . 8 ⊢ 𝐺 = (mulGrp‘𝑊) | |
18 | 17 | ringmgp 19026 | . . . . . . 7 ⊢ (𝑊 ∈ Ring → 𝐺 ∈ Mnd) |
19 | 16, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
20 | evl1varpw.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
21 | evl1varpw.x | . . . . . . . 8 ⊢ 𝑋 = (var1‘𝑅) | |
22 | eqid 2778 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
23 | 21, 2, 22 | vr1cl 20088 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑊)) |
24 | 14, 23 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
25 | 17, 22 | mgpbas 18968 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝐺) |
26 | evl1varpw.e | . . . . . . 7 ⊢ ↑ = (.g‘𝐺) | |
27 | 25, 26 | mulgnn0cl 18029 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) |
28 | 19, 20, 24, 27 | syl3anc 1351 | . . . . 5 ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) |
29 | eqid 2778 | . . . . . 6 ⊢ (algSc‘𝑊) = (algSc‘𝑊) | |
30 | eqid 2778 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
31 | eqid 2778 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
32 | eqid 2778 | . . . . . 6 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
33 | evl1scvarpw.t1 | . . . . . 6 ⊢ × = ( ·𝑠 ‘𝑊) | |
34 | 29, 30, 31, 22, 32, 33 | asclmul1 19833 | . . . . 5 ⊢ ((𝑊 ∈ AssAlg ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) → (((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋)) = (𝐴 × (𝑁 ↑ 𝑋))) |
35 | 4, 12, 28, 34 | syl3anc 1351 | . . . 4 ⊢ (𝜑 → (((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋)) = (𝐴 × (𝑁 ↑ 𝑋))) |
36 | 35 | eqcomd 2784 | . . 3 ⊢ (𝜑 → (𝐴 × (𝑁 ↑ 𝑋)) = (((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋))) |
37 | 36 | fveq2d 6503 | . 2 ⊢ (𝜑 → (𝑄‘(𝐴 × (𝑁 ↑ 𝑋))) = (𝑄‘(((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋)))) |
38 | evl1varpw.q | . . . . 5 ⊢ 𝑄 = (eval1‘𝑅) | |
39 | evl1scvarpw.s | . . . . 5 ⊢ 𝑆 = (𝑅 ↑s 𝐵) | |
40 | 38, 2, 39, 6 | evl1rhm 20197 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑄 ∈ (𝑊 RingHom 𝑆)) |
41 | 1, 40 | syl 17 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (𝑊 RingHom 𝑆)) |
42 | 2 | ply1lmod 20123 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ LMod) |
43 | 14, 42 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
44 | 29, 30, 16, 43, 31, 22 | asclf 19831 | . . . 4 ⊢ (𝜑 → (algSc‘𝑊):(Base‘(Scalar‘𝑊))⟶(Base‘𝑊)) |
45 | 44, 12 | ffvelrnd 6677 | . . 3 ⊢ (𝜑 → ((algSc‘𝑊)‘𝐴) ∈ (Base‘𝑊)) |
46 | evl1scvarpw.t2 | . . . 4 ⊢ ∙ = (.r‘𝑆) | |
47 | 22, 32, 46 | rhmmul 19202 | . . 3 ⊢ ((𝑄 ∈ (𝑊 RingHom 𝑆) ∧ ((algSc‘𝑊)‘𝐴) ∈ (Base‘𝑊) ∧ (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) → (𝑄‘(((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋))) = ((𝑄‘((algSc‘𝑊)‘𝐴)) ∙ (𝑄‘(𝑁 ↑ 𝑋)))) |
48 | 41, 45, 28, 47 | syl3anc 1351 | . 2 ⊢ (𝜑 → (𝑄‘(((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋))) = ((𝑄‘((algSc‘𝑊)‘𝐴)) ∙ (𝑄‘(𝑁 ↑ 𝑋)))) |
49 | 38, 2, 6, 29 | evl1sca 20199 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐵) → (𝑄‘((algSc‘𝑊)‘𝐴)) = (𝐵 × {𝐴})) |
50 | 1, 5, 49 | syl2anc 576 | . . 3 ⊢ (𝜑 → (𝑄‘((algSc‘𝑊)‘𝐴)) = (𝐵 × {𝐴})) |
51 | 38, 2, 17, 21, 6, 26, 1, 20 | evl1varpw 20226 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) |
52 | evl1scvarpw.f | . . . . . . . 8 ⊢ 𝐹 = (.g‘𝑀) | |
53 | evl1scvarpw.m | . . . . . . . . . 10 ⊢ 𝑀 = (mulGrp‘𝑆) | |
54 | 39 | fveq2i 6502 | . . . . . . . . . 10 ⊢ (mulGrp‘𝑆) = (mulGrp‘(𝑅 ↑s 𝐵)) |
55 | 53, 54 | eqtri 2802 | . . . . . . . . 9 ⊢ 𝑀 = (mulGrp‘(𝑅 ↑s 𝐵)) |
56 | 55 | fveq2i 6502 | . . . . . . . 8 ⊢ (.g‘𝑀) = (.g‘(mulGrp‘(𝑅 ↑s 𝐵))) |
57 | 52, 56 | eqtri 2802 | . . . . . . 7 ⊢ 𝐹 = (.g‘(mulGrp‘(𝑅 ↑s 𝐵))) |
58 | 57 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (.g‘(mulGrp‘(𝑅 ↑s 𝐵)))) |
59 | 58 | eqcomd 2784 | . . . . 5 ⊢ (𝜑 → (.g‘(mulGrp‘(𝑅 ↑s 𝐵))) = 𝐹) |
60 | 59 | oveqd 6993 | . . . 4 ⊢ (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋)) = (𝑁𝐹(𝑄‘𝑋))) |
61 | 51, 60 | eqtrd 2814 | . . 3 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁𝐹(𝑄‘𝑋))) |
62 | 50, 61 | oveq12d 6994 | . 2 ⊢ (𝜑 → ((𝑄‘((algSc‘𝑊)‘𝐴)) ∙ (𝑄‘(𝑁 ↑ 𝑋))) = ((𝐵 × {𝐴}) ∙ (𝑁𝐹(𝑄‘𝑋)))) |
63 | 37, 48, 62 | 3eqtrd 2818 | 1 ⊢ (𝜑 → (𝑄‘(𝐴 × (𝑁 ↑ 𝑋))) = ((𝐵 × {𝐴}) ∙ (𝑁𝐹(𝑄‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 {csn 4441 × cxp 5405 ‘cfv 6188 (class class class)co 6976 ℕ0cn0 11707 Basecbs 16339 .rcmulr 16422 Scalarcsca 16424 ·𝑠 cvsca 16425 ↑s cpws 16576 Mndcmnd 17762 .gcmg 18011 mulGrpcmgp 18962 Ringcrg 19020 CRingccrg 19021 RingHom crh 19187 LModclmod 19356 AssAlgcasa 19803 algSccascl 19805 var1cv1 20047 Poly1cpl1 20048 eval1ce1 20180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-of 7227 df-ofr 7228 df-om 7397 df-1st 7501 df-2nd 7502 df-supp 7634 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-er 8089 df-map 8208 df-pm 8209 df-ixp 8260 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-fsupp 8629 df-sup 8701 df-oi 8769 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 df-z 11794 df-dec 11912 df-uz 12059 df-fz 12709 df-fzo 12850 df-seq 13185 df-hash 13506 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-mulr 16435 df-sca 16437 df-vsca 16438 df-ip 16439 df-tset 16440 df-ple 16441 df-ds 16443 df-hom 16445 df-cco 16446 df-0g 16571 df-gsum 16572 df-prds 16577 df-pws 16579 df-mre 16715 df-mrc 16716 df-acs 16718 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-mhm 17803 df-submnd 17804 df-grp 17894 df-minusg 17895 df-sbg 17896 df-mulg 18012 df-subg 18060 df-ghm 18127 df-cntz 18218 df-cmn 18668 df-abl 18669 df-mgp 18963 df-ur 18975 df-srg 18979 df-ring 19022 df-cring 19023 df-rnghom 19190 df-subrg 19256 df-lmod 19358 df-lss 19426 df-lsp 19466 df-assa 19806 df-asp 19807 df-ascl 19808 df-psr 19850 df-mvr 19851 df-mpl 19852 df-opsr 19854 df-evls 19999 df-evl 20000 df-psr1 20051 df-vr1 20052 df-ply1 20053 df-evls1 20181 df-evl1 20182 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |