| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1scvarpw | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation maps a multiple of an exponentiation of a variable to the multiple of an exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
| Ref | Expression |
|---|---|
| evl1varpw.q | ⊢ 𝑄 = (eval1‘𝑅) |
| evl1varpw.w | ⊢ 𝑊 = (Poly1‘𝑅) |
| evl1varpw.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
| evl1varpw.x | ⊢ 𝑋 = (var1‘𝑅) |
| evl1varpw.b | ⊢ 𝐵 = (Base‘𝑅) |
| evl1varpw.e | ⊢ ↑ = (.g‘𝐺) |
| evl1varpw.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evl1varpw.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| evl1scvarpw.t1 | ⊢ × = ( ·𝑠 ‘𝑊) |
| evl1scvarpw.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| evl1scvarpw.s | ⊢ 𝑆 = (𝑅 ↑s 𝐵) |
| evl1scvarpw.t2 | ⊢ ∙ = (.r‘𝑆) |
| evl1scvarpw.m | ⊢ 𝑀 = (mulGrp‘𝑆) |
| evl1scvarpw.f | ⊢ 𝐹 = (.g‘𝑀) |
| Ref | Expression |
|---|---|
| evl1scvarpw | ⊢ (𝜑 → (𝑄‘(𝐴 × (𝑁 ↑ 𝑋))) = ((𝐵 × {𝐴}) ∙ (𝑁𝐹(𝑄‘𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1varpw.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 2 | evl1varpw.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑅) | |
| 3 | 2 | ply1assa 22135 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑊 ∈ AssAlg) |
| 4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ AssAlg) |
| 5 | evl1scvarpw.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 6 | evl1varpw.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | 5, 6 | eleqtrdi 2844 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑅)) |
| 8 | 2 | ply1sca 22188 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑊)) |
| 9 | 8 | eqcomd 2741 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (Scalar‘𝑊) = 𝑅) |
| 10 | 1, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (Scalar‘𝑊) = 𝑅) |
| 11 | 10 | fveq2d 6880 | . . . . . 6 ⊢ (𝜑 → (Base‘(Scalar‘𝑊)) = (Base‘𝑅)) |
| 12 | 7, 11 | eleqtrrd 2837 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Base‘(Scalar‘𝑊))) |
| 13 | evl1varpw.g | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘𝑊) | |
| 14 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 15 | 13, 14 | mgpbas 20105 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝐺) |
| 16 | evl1varpw.e | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
| 17 | crngring 20205 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 18 | 1, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 19 | 2 | ply1ring 22183 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ Ring) |
| 20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Ring) |
| 21 | 13 | ringmgp 20199 | . . . . . . 7 ⊢ (𝑊 ∈ Ring → 𝐺 ∈ Mnd) |
| 22 | 20, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 23 | evl1varpw.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 24 | evl1varpw.x | . . . . . . . 8 ⊢ 𝑋 = (var1‘𝑅) | |
| 25 | 24, 2, 14 | vr1cl 22153 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑊)) |
| 26 | 18, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
| 27 | 15, 16, 22, 23, 26 | mulgnn0cld 19078 | . . . . 5 ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) |
| 28 | eqid 2735 | . . . . . 6 ⊢ (algSc‘𝑊) = (algSc‘𝑊) | |
| 29 | eqid 2735 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 30 | eqid 2735 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 31 | eqid 2735 | . . . . . 6 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
| 32 | evl1scvarpw.t1 | . . . . . 6 ⊢ × = ( ·𝑠 ‘𝑊) | |
| 33 | 28, 29, 30, 14, 31, 32 | asclmul1 21846 | . . . . 5 ⊢ ((𝑊 ∈ AssAlg ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) → (((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋)) = (𝐴 × (𝑁 ↑ 𝑋))) |
| 34 | 4, 12, 27, 33 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋)) = (𝐴 × (𝑁 ↑ 𝑋))) |
| 35 | 34 | eqcomd 2741 | . . 3 ⊢ (𝜑 → (𝐴 × (𝑁 ↑ 𝑋)) = (((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋))) |
| 36 | 35 | fveq2d 6880 | . 2 ⊢ (𝜑 → (𝑄‘(𝐴 × (𝑁 ↑ 𝑋))) = (𝑄‘(((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋)))) |
| 37 | evl1varpw.q | . . . . 5 ⊢ 𝑄 = (eval1‘𝑅) | |
| 38 | evl1scvarpw.s | . . . . 5 ⊢ 𝑆 = (𝑅 ↑s 𝐵) | |
| 39 | 37, 2, 38, 6 | evl1rhm 22270 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑄 ∈ (𝑊 RingHom 𝑆)) |
| 40 | 1, 39 | syl 17 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (𝑊 RingHom 𝑆)) |
| 41 | 2 | ply1lmod 22187 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ LMod) |
| 42 | 18, 41 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 43 | 28, 29, 20, 42, 30, 14 | asclf 21842 | . . . 4 ⊢ (𝜑 → (algSc‘𝑊):(Base‘(Scalar‘𝑊))⟶(Base‘𝑊)) |
| 44 | 43, 12 | ffvelcdmd 7075 | . . 3 ⊢ (𝜑 → ((algSc‘𝑊)‘𝐴) ∈ (Base‘𝑊)) |
| 45 | evl1scvarpw.t2 | . . . 4 ⊢ ∙ = (.r‘𝑆) | |
| 46 | 14, 31, 45 | rhmmul 20446 | . . 3 ⊢ ((𝑄 ∈ (𝑊 RingHom 𝑆) ∧ ((algSc‘𝑊)‘𝐴) ∈ (Base‘𝑊) ∧ (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) → (𝑄‘(((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋))) = ((𝑄‘((algSc‘𝑊)‘𝐴)) ∙ (𝑄‘(𝑁 ↑ 𝑋)))) |
| 47 | 40, 44, 27, 46 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑄‘(((algSc‘𝑊)‘𝐴)(.r‘𝑊)(𝑁 ↑ 𝑋))) = ((𝑄‘((algSc‘𝑊)‘𝐴)) ∙ (𝑄‘(𝑁 ↑ 𝑋)))) |
| 48 | 37, 2, 6, 28 | evl1sca 22272 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐵) → (𝑄‘((algSc‘𝑊)‘𝐴)) = (𝐵 × {𝐴})) |
| 49 | 1, 5, 48 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑄‘((algSc‘𝑊)‘𝐴)) = (𝐵 × {𝐴})) |
| 50 | 37, 2, 13, 24, 6, 16, 1, 23 | evl1varpw 22299 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) |
| 51 | evl1scvarpw.f | . . . . . . . 8 ⊢ 𝐹 = (.g‘𝑀) | |
| 52 | evl1scvarpw.m | . . . . . . . . . 10 ⊢ 𝑀 = (mulGrp‘𝑆) | |
| 53 | 38 | fveq2i 6879 | . . . . . . . . . 10 ⊢ (mulGrp‘𝑆) = (mulGrp‘(𝑅 ↑s 𝐵)) |
| 54 | 52, 53 | eqtri 2758 | . . . . . . . . 9 ⊢ 𝑀 = (mulGrp‘(𝑅 ↑s 𝐵)) |
| 55 | 54 | fveq2i 6879 | . . . . . . . 8 ⊢ (.g‘𝑀) = (.g‘(mulGrp‘(𝑅 ↑s 𝐵))) |
| 56 | 51, 55 | eqtri 2758 | . . . . . . 7 ⊢ 𝐹 = (.g‘(mulGrp‘(𝑅 ↑s 𝐵))) |
| 57 | 56 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (.g‘(mulGrp‘(𝑅 ↑s 𝐵)))) |
| 58 | 57 | eqcomd 2741 | . . . . 5 ⊢ (𝜑 → (.g‘(mulGrp‘(𝑅 ↑s 𝐵))) = 𝐹) |
| 59 | 58 | oveqd 7422 | . . . 4 ⊢ (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋)) = (𝑁𝐹(𝑄‘𝑋))) |
| 60 | 50, 59 | eqtrd 2770 | . . 3 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁𝐹(𝑄‘𝑋))) |
| 61 | 49, 60 | oveq12d 7423 | . 2 ⊢ (𝜑 → ((𝑄‘((algSc‘𝑊)‘𝐴)) ∙ (𝑄‘(𝑁 ↑ 𝑋))) = ((𝐵 × {𝐴}) ∙ (𝑁𝐹(𝑄‘𝑋)))) |
| 62 | 36, 47, 61 | 3eqtrd 2774 | 1 ⊢ (𝜑 → (𝑄‘(𝐴 × (𝑁 ↑ 𝑋))) = ((𝐵 × {𝐴}) ∙ (𝑁𝐹(𝑄‘𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {csn 4601 × cxp 5652 ‘cfv 6531 (class class class)co 7405 ℕ0cn0 12501 Basecbs 17228 .rcmulr 17272 Scalarcsca 17274 ·𝑠 cvsca 17275 ↑s cpws 17460 Mndcmnd 18712 .gcmg 19050 mulGrpcmgp 20100 Ringcrg 20193 CRingccrg 20194 RingHom crh 20429 LModclmod 20817 AssAlgcasa 21810 algSccascl 21812 var1cv1 22111 Poly1cpl1 22112 eval1ce1 22252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-ghm 19196 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-srg 20147 df-ring 20195 df-cring 20196 df-rhm 20432 df-subrng 20506 df-subrg 20530 df-lmod 20819 df-lss 20889 df-lsp 20929 df-assa 21813 df-asp 21814 df-ascl 21815 df-psr 21869 df-mvr 21870 df-mpl 21871 df-opsr 21873 df-evls 22032 df-evl 22033 df-psr1 22115 df-vr1 22116 df-ply1 22117 df-evls1 22253 df-evl1 22254 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |