Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evl1vsd | Structured version Visualization version GIF version |
Description: Polynomial evaluation builder for scalar multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
evl1addd.q | ⊢ 𝑂 = (eval1‘𝑅) |
evl1addd.p | ⊢ 𝑃 = (Poly1‘𝑅) |
evl1addd.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1addd.u | ⊢ 𝑈 = (Base‘𝑃) |
evl1addd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1addd.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
evl1addd.3 | ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) |
evl1vsd.4 | ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
evl1vsd.s | ⊢ ∙ = ( ·𝑠 ‘𝑃) |
evl1vsd.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
evl1vsd | ⊢ (𝜑 → ((𝑁 ∙ 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 ∙ 𝑀))‘𝑌) = (𝑁 · 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1addd.q | . . 3 ⊢ 𝑂 = (eval1‘𝑅) | |
2 | evl1addd.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | evl1addd.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
4 | evl1addd.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
5 | evl1addd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
6 | evl1addd.2 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | eqid 2758 | . . . 4 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
8 | evl1vsd.4 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝐵) | |
9 | 1, 2, 3, 7, 4, 5, 8, 6 | evl1scad 21067 | . . 3 ⊢ (𝜑 → (((algSc‘𝑃)‘𝑁) ∈ 𝑈 ∧ ((𝑂‘((algSc‘𝑃)‘𝑁))‘𝑌) = 𝑁)) |
10 | evl1addd.3 | . . 3 ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) | |
11 | eqid 2758 | . . 3 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
12 | evl1vsd.t | . . 3 ⊢ · = (.r‘𝑅) | |
13 | 1, 2, 3, 4, 5, 6, 9, 10, 11, 12 | evl1muld 21075 | . 2 ⊢ (𝜑 → ((((algSc‘𝑃)‘𝑁)(.r‘𝑃)𝑀) ∈ 𝑈 ∧ ((𝑂‘(((algSc‘𝑃)‘𝑁)(.r‘𝑃)𝑀))‘𝑌) = (𝑁 · 𝑉))) |
14 | 2 | ply1assa 20936 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ AssAlg) |
15 | 5, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ AssAlg) |
16 | 2 | ply1sca 20990 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃)) |
17 | 5, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
18 | 17 | fveq2d 6667 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
19 | 3, 18 | syl5eq 2805 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘(Scalar‘𝑃))) |
20 | 8, 19 | eleqtrd 2854 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (Base‘(Scalar‘𝑃))) |
21 | 10 | simpld 498 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑈) |
22 | eqid 2758 | . . . . . 6 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
23 | eqid 2758 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
24 | evl1vsd.s | . . . . . 6 ⊢ ∙ = ( ·𝑠 ‘𝑃) | |
25 | 7, 22, 23, 4, 11, 24 | asclmul1 20661 | . . . . 5 ⊢ ((𝑃 ∈ AssAlg ∧ 𝑁 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑀 ∈ 𝑈) → (((algSc‘𝑃)‘𝑁)(.r‘𝑃)𝑀) = (𝑁 ∙ 𝑀)) |
26 | 15, 20, 21, 25 | syl3anc 1368 | . . . 4 ⊢ (𝜑 → (((algSc‘𝑃)‘𝑁)(.r‘𝑃)𝑀) = (𝑁 ∙ 𝑀)) |
27 | 26 | eleq1d 2836 | . . 3 ⊢ (𝜑 → ((((algSc‘𝑃)‘𝑁)(.r‘𝑃)𝑀) ∈ 𝑈 ↔ (𝑁 ∙ 𝑀) ∈ 𝑈)) |
28 | 26 | fveq2d 6667 | . . . . 5 ⊢ (𝜑 → (𝑂‘(((algSc‘𝑃)‘𝑁)(.r‘𝑃)𝑀)) = (𝑂‘(𝑁 ∙ 𝑀))) |
29 | 28 | fveq1d 6665 | . . . 4 ⊢ (𝜑 → ((𝑂‘(((algSc‘𝑃)‘𝑁)(.r‘𝑃)𝑀))‘𝑌) = ((𝑂‘(𝑁 ∙ 𝑀))‘𝑌)) |
30 | 29 | eqeq1d 2760 | . . 3 ⊢ (𝜑 → (((𝑂‘(((algSc‘𝑃)‘𝑁)(.r‘𝑃)𝑀))‘𝑌) = (𝑁 · 𝑉) ↔ ((𝑂‘(𝑁 ∙ 𝑀))‘𝑌) = (𝑁 · 𝑉))) |
31 | 27, 30 | anbi12d 633 | . 2 ⊢ (𝜑 → (((((algSc‘𝑃)‘𝑁)(.r‘𝑃)𝑀) ∈ 𝑈 ∧ ((𝑂‘(((algSc‘𝑃)‘𝑁)(.r‘𝑃)𝑀))‘𝑌) = (𝑁 · 𝑉)) ↔ ((𝑁 ∙ 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 ∙ 𝑀))‘𝑌) = (𝑁 · 𝑉)))) |
32 | 13, 31 | mpbid 235 | 1 ⊢ (𝜑 → ((𝑁 ∙ 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 ∙ 𝑀))‘𝑌) = (𝑁 · 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ‘cfv 6340 (class class class)co 7156 Basecbs 16554 .rcmulr 16637 Scalarcsca 16639 ·𝑠 cvsca 16640 CRingccrg 19379 AssAlgcasa 20628 algSccascl 20630 Poly1cpl1 20914 eval1ce1 21046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-ofr 7412 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-map 8424 df-pm 8425 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-sup 8952 df-oi 9020 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-fz 12953 df-fzo 13096 df-seq 13432 df-hash 13754 df-struct 16556 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-ress 16562 df-plusg 16649 df-mulr 16650 df-sca 16652 df-vsca 16653 df-ip 16654 df-tset 16655 df-ple 16656 df-ds 16658 df-hom 16660 df-cco 16661 df-0g 16786 df-gsum 16787 df-prds 16792 df-pws 16794 df-mre 16928 df-mrc 16929 df-acs 16931 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-mhm 18035 df-submnd 18036 df-grp 18185 df-minusg 18186 df-sbg 18187 df-mulg 18305 df-subg 18356 df-ghm 18436 df-cntz 18527 df-cmn 18988 df-abl 18989 df-mgp 19321 df-ur 19333 df-srg 19337 df-ring 19380 df-cring 19381 df-rnghom 19551 df-subrg 19614 df-lmod 19717 df-lss 19785 df-lsp 19825 df-assa 20631 df-asp 20632 df-ascl 20633 df-psr 20684 df-mvr 20685 df-mpl 20686 df-opsr 20688 df-evls 20848 df-evl 20849 df-psr1 20917 df-ply1 20919 df-evl1 21048 |
This theorem is referenced by: evl1scvarpwval 21096 fta1blem 24881 plypf1 24921 |
Copyright terms: Public domain | W3C validator |