Proof of Theorem chpscmatgsumbin
Step | Hyp | Ref
| Expression |
1 | | chp0mat.c |
. . 3
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
2 | | chp0mat.p |
. . 3
⊢ 𝑃 = (Poly1‘𝑅) |
3 | | chp0mat.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
4 | | chp0mat.x |
. . 3
⊢ 𝑋 = (var1‘𝑅) |
5 | | chp0mat.g |
. . 3
⊢ 𝐺 = (mulGrp‘𝑃) |
6 | | chp0mat.m |
. . 3
⊢ ↑ =
(.g‘𝐺) |
7 | | chpscmat.d |
. . 3
⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} |
8 | | chpscmat.s |
. . 3
⊢ 𝑆 = (algSc‘𝑃) |
9 | | chpscmat.m |
. . 3
⊢ − =
(-g‘𝑃) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | chpscmat0 21900 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶‘𝑀) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘(𝐽𝑀𝐽))))) |
11 | | crngring 19710 |
. . . . . . . 8
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
12 | 11 | adantl 481 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
13 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑃) =
(Base‘𝑃) |
14 | 4, 2, 13 | vr1cl 21298 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
15 | 12, 14 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃)) |
16 | 15 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝑋 ∈ (Base‘𝑃)) |
17 | 11 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝑅 ∈ Ring) |
18 | | eqid 2738 |
. . . . . . . 8
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
19 | 2 | ply1ring 21329 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
20 | 2 | ply1lmod 21333 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
21 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
22 | 8, 18, 19, 20, 21, 13 | asclf 20996 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃)) |
23 | 17, 22 | syl 17 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃)) |
24 | | simpr2 1193 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝐽 ∈ 𝑁) |
25 | | elrabi 3611 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} → 𝑀 ∈ (Base‘𝐴)) |
26 | 25 | a1d 25 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑀 ∈ (Base‘𝐴))) |
27 | 26, 7 | eleq2s 2857 |
. . . . . . . . . 10
⊢ (𝑀 ∈ 𝐷 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑀 ∈ (Base‘𝐴))) |
28 | 27 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑀 ∈ (Base‘𝐴))) |
29 | 28 | impcom 407 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝑀 ∈ (Base‘𝐴)) |
30 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
31 | 3, 30 | matecl 21482 |
. . . . . . . 8
⊢ ((𝐽 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐽𝑀𝐽) ∈ (Base‘𝑅)) |
32 | 24, 24, 29, 31 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐽𝑀𝐽) ∈ (Base‘𝑅)) |
33 | 2 | ply1sca 21334 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃)) |
34 | 33 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃)) |
35 | 34 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
(Scalar‘𝑃) = 𝑅) |
36 | 35 | adantr 480 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (Scalar‘𝑃) = 𝑅) |
37 | 36 | fveq2d 6760 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
38 | 32, 37 | eleqtrrd 2842 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐽𝑀𝐽) ∈ (Base‘(Scalar‘𝑃))) |
39 | 23, 38 | ffvelrnd 6944 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑆‘(𝐽𝑀𝐽)) ∈ (Base‘𝑃)) |
40 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝑃) = (+g‘𝑃) |
41 | | eqid 2738 |
. . . . . 6
⊢
(invg‘𝑃) = (invg‘𝑃) |
42 | 13, 40, 41, 9 | grpsubval 18540 |
. . . . 5
⊢ ((𝑋 ∈ (Base‘𝑃) ∧ (𝑆‘(𝐽𝑀𝐽)) ∈ (Base‘𝑃)) → (𝑋 − (𝑆‘(𝐽𝑀𝐽))) = (𝑋(+g‘𝑃)((invg‘𝑃)‘(𝑆‘(𝐽𝑀𝐽))))) |
43 | 16, 39, 42 | syl2anc 583 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑋 − (𝑆‘(𝐽𝑀𝐽))) = (𝑋(+g‘𝑃)((invg‘𝑃)‘(𝑆‘(𝐽𝑀𝐽))))) |
44 | 12, 20 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ LMod) |
45 | 44 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝑃 ∈ LMod) |
46 | 12, 19 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ Ring) |
47 | 46 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝑃 ∈ Ring) |
48 | | eqid 2738 |
. . . . . . . 8
⊢
(invg‘(Scalar‘𝑃)) =
(invg‘(Scalar‘𝑃)) |
49 | 8, 18, 21, 48, 41 | asclinvg 21003 |
. . . . . . 7
⊢ ((𝑃 ∈ LMod ∧ 𝑃 ∈ Ring ∧ (𝐽𝑀𝐽) ∈ (Base‘(Scalar‘𝑃))) →
((invg‘𝑃)‘(𝑆‘(𝐽𝑀𝐽))) = (𝑆‘((invg‘(Scalar‘𝑃))‘(𝐽𝑀𝐽)))) |
50 | 45, 47, 38, 49 | syl3anc 1369 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → ((invg‘𝑃)‘(𝑆‘(𝐽𝑀𝐽))) = (𝑆‘((invg‘(Scalar‘𝑃))‘(𝐽𝑀𝐽)))) |
51 | | chpscmatgsum.i |
. . . . . . . . 9
⊢ 𝐼 = (invg‘𝑅) |
52 | 34 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
(invg‘𝑅) =
(invg‘(Scalar‘𝑃))) |
53 | 52 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (invg‘𝑅) =
(invg‘(Scalar‘𝑃))) |
54 | 51, 53 | eqtr2id 2792 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) →
(invg‘(Scalar‘𝑃)) = 𝐼) |
55 | 54 | fveq1d 6758 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) →
((invg‘(Scalar‘𝑃))‘(𝐽𝑀𝐽)) = (𝐼‘(𝐽𝑀𝐽))) |
56 | 55 | fveq2d 6760 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑆‘((invg‘(Scalar‘𝑃))‘(𝐽𝑀𝐽))) = (𝑆‘(𝐼‘(𝐽𝑀𝐽)))) |
57 | 50, 56 | eqtrd 2778 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → ((invg‘𝑃)‘(𝑆‘(𝐽𝑀𝐽))) = (𝑆‘(𝐼‘(𝐽𝑀𝐽)))) |
58 | 57 | oveq2d 7271 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑋(+g‘𝑃)((invg‘𝑃)‘(𝑆‘(𝐽𝑀𝐽)))) = (𝑋(+g‘𝑃)(𝑆‘(𝐼‘(𝐽𝑀𝐽))))) |
59 | 43, 58 | eqtrd 2778 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑋 − (𝑆‘(𝐽𝑀𝐽))) = (𝑋(+g‘𝑃)(𝑆‘(𝐼‘(𝐽𝑀𝐽))))) |
60 | 59 | oveq2d 7271 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → ((♯‘𝑁) ↑ (𝑋 − (𝑆‘(𝐽𝑀𝐽)))) = ((♯‘𝑁) ↑ (𝑋(+g‘𝑃)(𝑆‘(𝐼‘(𝐽𝑀𝐽)))))) |
61 | | simplr 765 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝑅 ∈ CRing) |
62 | | hashcl 13999 |
. . . . 5
⊢ (𝑁 ∈ Fin →
(♯‘𝑁) ∈
ℕ0) |
63 | 62 | ad2antrr 722 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (♯‘𝑁) ∈
ℕ0) |
64 | | ringgrp 19703 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
65 | 11, 64 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Grp) |
66 | 65 | ad2antlr 723 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝑅 ∈ Grp) |
67 | 30, 51 | grpinvcl 18542 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ (𝐽𝑀𝐽) ∈ (Base‘𝑅)) → (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝑅)) |
68 | 66, 32, 67 | syl2anc 583 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝑅)) |
69 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝑃) = (.r‘𝑃) |
70 | | chpscmatgsum.f |
. . . . 5
⊢ 𝐹 = (.g‘𝑃) |
71 | | chpscmatgsum.h |
. . . . 5
⊢ 𝐻 = (mulGrp‘𝑅) |
72 | | chpscmatgsum.e |
. . . . 5
⊢ 𝐸 = (.g‘𝐻) |
73 | 2, 4, 40, 69, 70, 5, 6, 30, 8,
71, 72 | lply1binomsc 21388 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧
(♯‘𝑁) ∈
ℕ0 ∧ (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝑅)) → ((♯‘𝑁) ↑ (𝑋(+g‘𝑃)(𝑆‘(𝐼‘(𝐽𝑀𝐽))))) = (𝑃 Σg (𝑙 ∈
(0...(♯‘𝑁))
↦ (((♯‘𝑁)C𝑙)𝐹((𝑆‘(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))))(.r‘𝑃)(𝑙 ↑ 𝑋)))))) |
74 | 61, 63, 68, 73 | syl3anc 1369 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → ((♯‘𝑁) ↑ (𝑋(+g‘𝑃)(𝑆‘(𝐼‘(𝐽𝑀𝐽))))) = (𝑃 Σg (𝑙 ∈
(0...(♯‘𝑁))
↦ (((♯‘𝑁)C𝑙)𝐹((𝑆‘(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))))(.r‘𝑃)(𝑙 ↑ 𝑋)))))) |
75 | 2 | ply1assa 21280 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑃 ∈ AssAlg) |
76 | 75 | adantl 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ AssAlg) |
77 | 76 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → 𝑃 ∈ AssAlg) |
78 | 71 | ringmgp 19704 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝐻 ∈ Mnd) |
79 | 12, 78 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐻 ∈ Mnd) |
80 | 79 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → 𝐻 ∈ Mnd) |
81 | | fznn0sub 13217 |
. . . . . . . . . 10
⊢ (𝑙 ∈
(0...(♯‘𝑁))
→ ((♯‘𝑁)
− 𝑙) ∈
ℕ0) |
82 | 81 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → ((♯‘𝑁) − 𝑙) ∈
ℕ0) |
83 | 71, 30 | mgpbas 19641 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝐻) |
84 | 68, 83 | eleqtrdi 2849 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝐻)) |
85 | 84 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝐻)) |
86 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝐻) =
(Base‘𝐻) |
87 | 86, 72 | mulgnn0cl 18635 |
. . . . . . . . 9
⊢ ((𝐻 ∈ Mnd ∧
((♯‘𝑁) −
𝑙) ∈
ℕ0 ∧ (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝐻)) → (((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) ∈ (Base‘𝐻)) |
88 | 80, 82, 85, 87 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) ∈ (Base‘𝐻)) |
89 | 35 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
(Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
90 | 89, 83 | eqtrdi 2795 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
(Base‘(Scalar‘𝑃)) = (Base‘𝐻)) |
91 | 90 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (Base‘(Scalar‘𝑃)) = (Base‘𝐻)) |
92 | 88, 91 | eleqtrrd 2842 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) ∈ (Base‘(Scalar‘𝑃))) |
93 | 5 | ringmgp 19704 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ Ring → 𝐺 ∈ Mnd) |
94 | 11, 19, 93 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝐺 ∈ Mnd) |
95 | 94 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑙 ∈
(0...(♯‘𝑁)))
→ 𝐺 ∈
Mnd) |
96 | | elfznn0 13278 |
. . . . . . . . . 10
⊢ (𝑙 ∈
(0...(♯‘𝑁))
→ 𝑙 ∈
ℕ0) |
97 | 96 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑙 ∈
(0...(♯‘𝑁)))
→ 𝑙 ∈
ℕ0) |
98 | 15 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑙 ∈
(0...(♯‘𝑁)))
→ 𝑋 ∈
(Base‘𝑃)) |
99 | 5, 13 | mgpbas 19641 |
. . . . . . . . . 10
⊢
(Base‘𝑃) =
(Base‘𝐺) |
100 | 99, 6 | mulgnn0cl 18635 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Mnd ∧ 𝑙 ∈ ℕ0
∧ 𝑋 ∈
(Base‘𝑃)) →
(𝑙 ↑ 𝑋) ∈ (Base‘𝑃)) |
101 | 95, 97, 98, 100 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑙 ∈
(0...(♯‘𝑁)))
→ (𝑙 ↑ 𝑋) ∈ (Base‘𝑃)) |
102 | 101 | adantlr 711 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (𝑙 ↑ 𝑋) ∈ (Base‘𝑃)) |
103 | | chpscmatgsum.s |
. . . . . . . 8
⊢ · = (
·𝑠 ‘𝑃) |
104 | 8, 18, 21, 13, 69, 103 | asclmul1 21000 |
. . . . . . 7
⊢ ((𝑃 ∈ AssAlg ∧
(((♯‘𝑁) −
𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑙 ↑ 𝑋) ∈ (Base‘𝑃)) → ((𝑆‘(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))))(.r‘𝑃)(𝑙 ↑ 𝑋)) = ((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 ↑ 𝑋))) |
105 | 77, 92, 102, 104 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → ((𝑆‘(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))))(.r‘𝑃)(𝑙 ↑ 𝑋)) = ((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 ↑ 𝑋))) |
106 | 105 | oveq2d 7271 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (((♯‘𝑁)C𝑙)𝐹((𝑆‘(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))))(.r‘𝑃)(𝑙 ↑ 𝑋))) = (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 ↑ 𝑋)))) |
107 | 106 | mpteq2dva 5170 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((𝑆‘(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))))(.r‘𝑃)(𝑙 ↑ 𝑋)))) = (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 ↑ 𝑋))))) |
108 | 107 | oveq2d 7271 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑃 Σg (𝑙 ∈
(0...(♯‘𝑁))
↦ (((♯‘𝑁)C𝑙)𝐹((𝑆‘(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))))(.r‘𝑃)(𝑙 ↑ 𝑋))))) = (𝑃 Σg (𝑙 ∈
(0...(♯‘𝑁))
↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 ↑ 𝑋)))))) |
109 | 74, 108 | eqtrd 2778 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → ((♯‘𝑁) ↑ (𝑋(+g‘𝑃)(𝑆‘(𝐼‘(𝐽𝑀𝐽))))) = (𝑃 Σg (𝑙 ∈
(0...(♯‘𝑁))
↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 ↑ 𝑋)))))) |
110 | 10, 60, 109 | 3eqtrd 2782 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶‘𝑀) = (𝑃 Σg (𝑙 ∈
(0...(♯‘𝑁))
↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 ↑ 𝑋)))))) |