Step | Hyp | Ref
| Expression |
1 | | chp0mat.c |
. . 3
β’ πΆ = (π CharPlyMat π
) |
2 | | chp0mat.p |
. . 3
β’ π = (Poly1βπ
) |
3 | | chp0mat.a |
. . 3
β’ π΄ = (π Mat π
) |
4 | | chp0mat.x |
. . 3
β’ π = (var1βπ
) |
5 | | chp0mat.g |
. . 3
β’ πΊ = (mulGrpβπ) |
6 | | chp0mat.m |
. . 3
β’ β =
(.gβπΊ) |
7 | | chpscmat.d |
. . 3
β’ π· = {π β (Baseβπ΄) β£ βπ β (Baseβπ
)βπ β π βπ β π (πππ) = if(π = π, π, (0gβπ
))} |
8 | | chpscmat.s |
. . 3
β’ π = (algScβπ) |
9 | | chpscmat.m |
. . 3
β’ β =
(-gβπ) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | chpscmat0 22336 |
. 2
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β (πΆβπ) = ((β―βπ) β (π β (πβ(π½ππ½))))) |
11 | | crngring 20061 |
. . . . . . . 8
β’ (π
β CRing β π
β Ring) |
12 | 11 | adantl 482 |
. . . . . . 7
β’ ((π β Fin β§ π
β CRing) β π
β Ring) |
13 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβπ) =
(Baseβπ) |
14 | 4, 2, 13 | vr1cl 21732 |
. . . . . . 7
β’ (π
β Ring β π β (Baseβπ)) |
15 | 12, 14 | syl 17 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing) β π β (Baseβπ)) |
16 | 15 | adantr 481 |
. . . . 5
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β π β (Baseβπ)) |
17 | 11 | ad2antlr 725 |
. . . . . . 7
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β π
β Ring) |
18 | | eqid 2732 |
. . . . . . . 8
β’
(Scalarβπ) =
(Scalarβπ) |
19 | 2 | ply1ring 21761 |
. . . . . . . 8
β’ (π
β Ring β π β Ring) |
20 | 2 | ply1lmod 21765 |
. . . . . . . 8
β’ (π
β Ring β π β LMod) |
21 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
22 | 8, 18, 19, 20, 21, 13 | asclf 21427 |
. . . . . . 7
β’ (π
β Ring β π:(Baseβ(Scalarβπ))βΆ(Baseβπ)) |
23 | 17, 22 | syl 17 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β π:(Baseβ(Scalarβπ))βΆ(Baseβπ)) |
24 | | simpr2 1195 |
. . . . . . . 8
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β π½ β π) |
25 | | elrabi 3676 |
. . . . . . . . . . . 12
β’ (π β {π β (Baseβπ΄) β£ βπ β (Baseβπ
)βπ β π βπ β π (πππ) = if(π = π, π, (0gβπ
))} β π β (Baseβπ΄)) |
26 | 25 | a1d 25 |
. . . . . . . . . . 11
β’ (π β {π β (Baseβπ΄) β£ βπ β (Baseβπ
)βπ β π βπ β π (πππ) = if(π = π, π, (0gβπ
))} β ((π β Fin β§ π
β CRing) β π β (Baseβπ΄))) |
27 | 26, 7 | eleq2s 2851 |
. . . . . . . . . 10
β’ (π β π· β ((π β Fin β§ π
β CRing) β π β (Baseβπ΄))) |
28 | 27 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ ((π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½)) β ((π β Fin β§ π
β CRing) β π β (Baseβπ΄))) |
29 | 28 | impcom 408 |
. . . . . . . 8
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β π β (Baseβπ΄)) |
30 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβπ
) =
(Baseβπ
) |
31 | 3, 30 | matecl 21918 |
. . . . . . . 8
β’ ((π½ β π β§ π½ β π β§ π β (Baseβπ΄)) β (π½ππ½) β (Baseβπ
)) |
32 | 24, 24, 29, 31 | syl3anc 1371 |
. . . . . . 7
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β (π½ππ½) β (Baseβπ
)) |
33 | 2 | ply1sca 21766 |
. . . . . . . . . . 11
β’ (π
β CRing β π
= (Scalarβπ)) |
34 | 33 | adantl 482 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β CRing) β π
= (Scalarβπ)) |
35 | 34 | eqcomd 2738 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β CRing) β
(Scalarβπ) = π
) |
36 | 35 | adantr 481 |
. . . . . . . 8
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β (Scalarβπ) = π
) |
37 | 36 | fveq2d 6892 |
. . . . . . 7
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β (Baseβ(Scalarβπ)) = (Baseβπ
)) |
38 | 32, 37 | eleqtrrd 2836 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β (π½ππ½) β (Baseβ(Scalarβπ))) |
39 | 23, 38 | ffvelcdmd 7084 |
. . . . 5
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β (πβ(π½ππ½)) β (Baseβπ)) |
40 | | eqid 2732 |
. . . . . 6
β’
(+gβπ) = (+gβπ) |
41 | | eqid 2732 |
. . . . . 6
β’
(invgβπ) = (invgβπ) |
42 | 13, 40, 41, 9 | grpsubval 18866 |
. . . . 5
β’ ((π β (Baseβπ) β§ (πβ(π½ππ½)) β (Baseβπ)) β (π β (πβ(π½ππ½))) = (π(+gβπ)((invgβπ)β(πβ(π½ππ½))))) |
43 | 16, 39, 42 | syl2anc 584 |
. . . 4
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β (π β (πβ(π½ππ½))) = (π(+gβπ)((invgβπ)β(πβ(π½ππ½))))) |
44 | 12, 20 | syl 17 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing) β π β LMod) |
45 | 44 | adantr 481 |
. . . . . . 7
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β π β LMod) |
46 | 12, 19 | syl 17 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing) β π β Ring) |
47 | 46 | adantr 481 |
. . . . . . 7
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β π β Ring) |
48 | | eqid 2732 |
. . . . . . . 8
β’
(invgβ(Scalarβπ)) =
(invgβ(Scalarβπ)) |
49 | 8, 18, 21, 48, 41 | asclinvg 21434 |
. . . . . . 7
β’ ((π β LMod β§ π β Ring β§ (π½ππ½) β (Baseβ(Scalarβπ))) β
((invgβπ)β(πβ(π½ππ½))) = (πβ((invgβ(Scalarβπ))β(π½ππ½)))) |
50 | 45, 47, 38, 49 | syl3anc 1371 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β ((invgβπ)β(πβ(π½ππ½))) = (πβ((invgβ(Scalarβπ))β(π½ππ½)))) |
51 | | chpscmatgsum.i |
. . . . . . . . 9
β’ πΌ = (invgβπ
) |
52 | 34 | fveq2d 6892 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β CRing) β
(invgβπ
) =
(invgβ(Scalarβπ))) |
53 | 52 | adantr 481 |
. . . . . . . . 9
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β (invgβπ
) =
(invgβ(Scalarβπ))) |
54 | 51, 53 | eqtr2id 2785 |
. . . . . . . 8
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β
(invgβ(Scalarβπ)) = πΌ) |
55 | 54 | fveq1d 6890 |
. . . . . . 7
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β
((invgβ(Scalarβπ))β(π½ππ½)) = (πΌβ(π½ππ½))) |
56 | 55 | fveq2d 6892 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β (πβ((invgβ(Scalarβπ))β(π½ππ½))) = (πβ(πΌβ(π½ππ½)))) |
57 | 50, 56 | eqtrd 2772 |
. . . . 5
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β ((invgβπ)β(πβ(π½ππ½))) = (πβ(πΌβ(π½ππ½)))) |
58 | 57 | oveq2d 7421 |
. . . 4
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β (π(+gβπ)((invgβπ)β(πβ(π½ππ½)))) = (π(+gβπ)(πβ(πΌβ(π½ππ½))))) |
59 | 43, 58 | eqtrd 2772 |
. . 3
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β (π β (πβ(π½ππ½))) = (π(+gβπ)(πβ(πΌβ(π½ππ½))))) |
60 | 59 | oveq2d 7421 |
. 2
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β ((β―βπ) β (π β (πβ(π½ππ½)))) = ((β―βπ) β (π(+gβπ)(πβ(πΌβ(π½ππ½)))))) |
61 | | simplr 767 |
. . . 4
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β π
β CRing) |
62 | | hashcl 14312 |
. . . . 5
β’ (π β Fin β
(β―βπ) β
β0) |
63 | 62 | ad2antrr 724 |
. . . 4
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β (β―βπ) β
β0) |
64 | | ringgrp 20054 |
. . . . . . 7
β’ (π
β Ring β π
β Grp) |
65 | 11, 64 | syl 17 |
. . . . . 6
β’ (π
β CRing β π
β Grp) |
66 | 65 | ad2antlr 725 |
. . . . 5
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β π
β Grp) |
67 | 30, 51 | grpinvcl 18868 |
. . . . 5
β’ ((π
β Grp β§ (π½ππ½) β (Baseβπ
)) β (πΌβ(π½ππ½)) β (Baseβπ
)) |
68 | 66, 32, 67 | syl2anc 584 |
. . . 4
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β (πΌβ(π½ππ½)) β (Baseβπ
)) |
69 | | eqid 2732 |
. . . . 5
β’
(.rβπ) = (.rβπ) |
70 | | chpscmatgsum.f |
. . . . 5
β’ πΉ = (.gβπ) |
71 | | chpscmatgsum.h |
. . . . 5
β’ π» = (mulGrpβπ
) |
72 | | chpscmatgsum.e |
. . . . 5
β’ πΈ = (.gβπ») |
73 | 2, 4, 40, 69, 70, 5, 6, 30, 8,
71, 72 | lply1binomsc 21822 |
. . . 4
β’ ((π
β CRing β§
(β―βπ) β
β0 β§ (πΌβ(π½ππ½)) β (Baseβπ
)) β ((β―βπ) β (π(+gβπ)(πβ(πΌβ(π½ππ½))))) = (π Ξ£g (π β
(0...(β―βπ))
β¦ (((β―βπ)Cπ)πΉ((πβ(((β―βπ) β π)πΈ(πΌβ(π½ππ½))))(.rβπ)(π β π)))))) |
74 | 61, 63, 68, 73 | syl3anc 1371 |
. . 3
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β ((β―βπ) β (π(+gβπ)(πβ(πΌβ(π½ππ½))))) = (π Ξ£g (π β
(0...(β―βπ))
β¦ (((β―βπ)Cπ)πΉ((πβ(((β―βπ) β π)πΈ(πΌβ(π½ππ½))))(.rβπ)(π β π)))))) |
75 | 2 | ply1assa 21714 |
. . . . . . . . 9
β’ (π
β CRing β π β AssAlg) |
76 | 75 | adantl 482 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing) β π β AssAlg) |
77 | 76 | ad2antrr 724 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β§ π β (0...(β―βπ))) β π β AssAlg) |
78 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβπ») =
(Baseβπ») |
79 | 71 | ringmgp 20055 |
. . . . . . . . . . 11
β’ (π
β Ring β π» β Mnd) |
80 | 12, 79 | syl 17 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β CRing) β π» β Mnd) |
81 | 80 | ad2antrr 724 |
. . . . . . . . 9
β’ ((((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β§ π β (0...(β―βπ))) β π» β Mnd) |
82 | | fznn0sub 13529 |
. . . . . . . . . 10
β’ (π β
(0...(β―βπ))
β ((β―βπ)
β π) β
β0) |
83 | 82 | adantl 482 |
. . . . . . . . 9
β’ ((((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β§ π β (0...(β―βπ))) β ((β―βπ) β π) β
β0) |
84 | 71, 30 | mgpbas 19987 |
. . . . . . . . . . 11
β’
(Baseβπ
) =
(Baseβπ») |
85 | 68, 84 | eleqtrdi 2843 |
. . . . . . . . . 10
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β (πΌβ(π½ππ½)) β (Baseβπ»)) |
86 | 85 | adantr 481 |
. . . . . . . . 9
β’ ((((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β§ π β (0...(β―βπ))) β (πΌβ(π½ππ½)) β (Baseβπ»)) |
87 | 78, 72, 81, 83, 86 | mulgnn0cld 18969 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β§ π β (0...(β―βπ))) β (((β―βπ) β π)πΈ(πΌβ(π½ππ½))) β (Baseβπ»)) |
88 | 35 | fveq2d 6892 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β CRing) β
(Baseβ(Scalarβπ)) = (Baseβπ
)) |
89 | 88, 84 | eqtrdi 2788 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β CRing) β
(Baseβ(Scalarβπ)) = (Baseβπ»)) |
90 | 89 | ad2antrr 724 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β§ π β (0...(β―βπ))) β (Baseβ(Scalarβπ)) = (Baseβπ»)) |
91 | 87, 90 | eleqtrrd 2836 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β§ π β (0...(β―βπ))) β (((β―βπ) β π)πΈ(πΌβ(π½ππ½))) β (Baseβ(Scalarβπ))) |
92 | 5, 13 | mgpbas 19987 |
. . . . . . . . 9
β’
(Baseβπ) =
(BaseβπΊ) |
93 | 5 | ringmgp 20055 |
. . . . . . . . . . 11
β’ (π β Ring β πΊ β Mnd) |
94 | 11, 19, 93 | 3syl 18 |
. . . . . . . . . 10
β’ (π
β CRing β πΊ β Mnd) |
95 | 94 | ad2antlr 725 |
. . . . . . . . 9
β’ (((π β Fin β§ π
β CRing) β§ π β
(0...(β―βπ)))
β πΊ β
Mnd) |
96 | | elfznn0 13590 |
. . . . . . . . . 10
β’ (π β
(0...(β―βπ))
β π β
β0) |
97 | 96 | adantl 482 |
. . . . . . . . 9
β’ (((π β Fin β§ π
β CRing) β§ π β
(0...(β―βπ)))
β π β
β0) |
98 | 15 | adantr 481 |
. . . . . . . . 9
β’ (((π β Fin β§ π
β CRing) β§ π β
(0...(β―βπ)))
β π β
(Baseβπ)) |
99 | 92, 6, 95, 97, 98 | mulgnn0cld 18969 |
. . . . . . . 8
β’ (((π β Fin β§ π
β CRing) β§ π β
(0...(β―βπ)))
β (π β π) β (Baseβπ)) |
100 | 99 | adantlr 713 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β§ π β (0...(β―βπ))) β (π β π) β (Baseβπ)) |
101 | | chpscmatgsum.s |
. . . . . . . 8
β’ Β· = (
Β·π βπ) |
102 | 8, 18, 21, 13, 69, 101 | asclmul1 21431 |
. . . . . . 7
β’ ((π β AssAlg β§
(((β―βπ) β
π)πΈ(πΌβ(π½ππ½))) β (Baseβ(Scalarβπ)) β§ (π β π) β (Baseβπ)) β ((πβ(((β―βπ) β π)πΈ(πΌβ(π½ππ½))))(.rβπ)(π β π)) = ((((β―βπ) β π)πΈ(πΌβ(π½ππ½))) Β· (π β π))) |
103 | 77, 91, 100, 102 | syl3anc 1371 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β§ π β (0...(β―βπ))) β ((πβ(((β―βπ) β π)πΈ(πΌβ(π½ππ½))))(.rβπ)(π β π)) = ((((β―βπ) β π)πΈ(πΌβ(π½ππ½))) Β· (π β π))) |
104 | 103 | oveq2d 7421 |
. . . . 5
β’ ((((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β§ π β (0...(β―βπ))) β (((β―βπ)Cπ)πΉ((πβ(((β―βπ) β π)πΈ(πΌβ(π½ππ½))))(.rβπ)(π β π))) = (((β―βπ)Cπ)πΉ((((β―βπ) β π)πΈ(πΌβ(π½ππ½))) Β· (π β π)))) |
105 | 104 | mpteq2dva 5247 |
. . . 4
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β (π β (0...(β―βπ)) β¦ (((β―βπ)Cπ)πΉ((πβ(((β―βπ) β π)πΈ(πΌβ(π½ππ½))))(.rβπ)(π β π)))) = (π β (0...(β―βπ)) β¦ (((β―βπ)Cπ)πΉ((((β―βπ) β π)πΈ(πΌβ(π½ππ½))) Β· (π β π))))) |
106 | 105 | oveq2d 7421 |
. . 3
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β (π Ξ£g (π β
(0...(β―βπ))
β¦ (((β―βπ)Cπ)πΉ((πβ(((β―βπ) β π)πΈ(πΌβ(π½ππ½))))(.rβπ)(π β π))))) = (π Ξ£g (π β
(0...(β―βπ))
β¦ (((β―βπ)Cπ)πΉ((((β―βπ) β π)πΈ(πΌβ(π½ππ½))) Β· (π β π)))))) |
107 | 74, 106 | eqtrd 2772 |
. 2
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β ((β―βπ) β (π(+gβπ)(πβ(πΌβ(π½ππ½))))) = (π Ξ£g (π β
(0...(β―βπ))
β¦ (((β―βπ)Cπ)πΉ((((β―βπ) β π)πΈ(πΌβ(π½ππ½))) Β· (π β π)))))) |
108 | 10, 60, 107 | 3eqtrd 2776 |
1
β’ (((π β Fin β§ π
β CRing) β§ (π β π· β§ π½ β π β§ βπ β π (πππ) = (π½ππ½))) β (πΆβπ) = (π Ξ£g (π β
(0...(β―βπ))
β¦ (((β―βπ)Cπ)πΉ((((β―βπ) β π)πΈ(πΌβ(π½ππ½))) Β· (π β π)))))) |