MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpscmatgsumbin Structured version   Visualization version   GIF version

Theorem chpscmatgsumbin 20868
Description: The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of binomials. (Contributed by AV, 2-Sep-2019.)
Hypotheses
Ref Expression
chp0mat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chp0mat.p 𝑃 = (Poly1𝑅)
chp0mat.a 𝐴 = (𝑁 Mat 𝑅)
chp0mat.x 𝑋 = (var1𝑅)
chp0mat.g 𝐺 = (mulGrp‘𝑃)
chp0mat.m = (.g𝐺)
chpscmat.d 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}
chpscmat.s 𝑆 = (algSc‘𝑃)
chpscmat.m = (-g𝑃)
chpscmatgsum.f 𝐹 = (.g𝑃)
chpscmatgsum.h 𝐻 = (mulGrp‘𝑅)
chpscmatgsum.e 𝐸 = (.g𝐻)
chpscmatgsum.i 𝐼 = (invg𝑅)
chpscmatgsum.s · = ( ·𝑠𝑃)
Assertion
Ref Expression
chpscmatgsumbin (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶𝑀) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 𝑋))))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝑖,𝑋,𝑗   𝐴,𝑐,𝑚   𝐷,𝑛   𝑛,𝐸   𝑛,𝐼   𝑀,𝑐,𝑖,𝑗,𝑚,𝑛   𝑁,𝑐,𝑚,𝑛   𝑃,𝑛   𝑅,𝑐,𝑚,𝑛   𝑆,𝑛   𝐷,𝑙   𝐹,𝑙   𝐼,𝑙   𝐽,𝑙,𝑛   𝑀,𝑙   𝑁,𝑙   𝑃,𝑙   𝑅,𝑙   𝑆,𝑙   𝑋,𝑙   ,𝑙
Allowed substitution hints:   𝐴(𝑛,𝑙)   𝐶(𝑖,𝑗,𝑚,𝑛,𝑐,𝑙)   𝐷(𝑖,𝑗,𝑚,𝑐)   𝑃(𝑚,𝑐)   𝑆(𝑖,𝑗,𝑚,𝑐)   · (𝑖,𝑗,𝑚,𝑛,𝑐,𝑙)   𝐸(𝑖,𝑗,𝑚,𝑐,𝑙)   (𝑖,𝑗,𝑚,𝑛,𝑐)   𝐹(𝑖,𝑗,𝑚,𝑛,𝑐)   𝐺(𝑖,𝑗,𝑚,𝑛,𝑐,𝑙)   𝐻(𝑖,𝑗,𝑚,𝑛,𝑐,𝑙)   𝐼(𝑖,𝑗,𝑚,𝑐)   𝐽(𝑖,𝑗,𝑚,𝑐)   (𝑖,𝑗,𝑚,𝑛,𝑐,𝑙)   𝑋(𝑚,𝑛,𝑐)

Proof of Theorem chpscmatgsumbin
StepHypRef Expression
1 chp0mat.c . . 3 𝐶 = (𝑁 CharPlyMat 𝑅)
2 chp0mat.p . . 3 𝑃 = (Poly1𝑅)
3 chp0mat.a . . 3 𝐴 = (𝑁 Mat 𝑅)
4 chp0mat.x . . 3 𝑋 = (var1𝑅)
5 chp0mat.g . . 3 𝐺 = (mulGrp‘𝑃)
6 chp0mat.m . . 3 = (.g𝐺)
7 chpscmat.d . . 3 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}
8 chpscmat.s . . 3 𝑆 = (algSc‘𝑃)
9 chpscmat.m . . 3 = (-g𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9chpscmat0 20867 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶𝑀) = ((♯‘𝑁) (𝑋 (𝑆‘(𝐽𝑀𝐽)))))
11 crngring 18765 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1211adantl 467 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
13 eqid 2770 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
144, 2, 13vr1cl 19801 . . . . . . 7 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
1512, 14syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃))
1615adantr 466 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝑋 ∈ (Base‘𝑃))
1711ad2antlr 698 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝑅 ∈ Ring)
18 eqid 2770 . . . . . . . 8 (Scalar‘𝑃) = (Scalar‘𝑃)
192ply1ring 19832 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
202ply1lmod 19836 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
21 eqid 2770 . . . . . . . 8 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
228, 18, 19, 20, 21, 13asclf 19551 . . . . . . 7 (𝑅 ∈ Ring → 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃))
2317, 22syl 17 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃))
24 simpr2 1234 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝐽𝑁)
25 elrabi 3508 . . . . . . . . . . . 12 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} → 𝑀 ∈ (Base‘𝐴))
2625a1d 25 . . . . . . . . . . 11 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑀 ∈ (Base‘𝐴)))
2726, 7eleq2s 2867 . . . . . . . . . 10 (𝑀𝐷 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑀 ∈ (Base‘𝐴)))
28273ad2ant1 1126 . . . . . . . . 9 ((𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑀 ∈ (Base‘𝐴)))
2928impcom 394 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝑀 ∈ (Base‘𝐴))
30 eqid 2770 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
313, 30matecl 20447 . . . . . . . 8 ((𝐽𝑁𝐽𝑁𝑀 ∈ (Base‘𝐴)) → (𝐽𝑀𝐽) ∈ (Base‘𝑅))
3224, 24, 29, 31syl3anc 1475 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐽𝑀𝐽) ∈ (Base‘𝑅))
332ply1sca 19837 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
3433adantl 467 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃))
3534eqcomd 2776 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Scalar‘𝑃) = 𝑅)
3635adantr 466 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (Scalar‘𝑃) = 𝑅)
3736fveq2d 6336 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
3832, 37eleqtrrd 2852 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐽𝑀𝐽) ∈ (Base‘(Scalar‘𝑃)))
3923, 38ffvelrnd 6503 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑆‘(𝐽𝑀𝐽)) ∈ (Base‘𝑃))
40 eqid 2770 . . . . . 6 (+g𝑃) = (+g𝑃)
41 eqid 2770 . . . . . 6 (invg𝑃) = (invg𝑃)
4213, 40, 41, 9grpsubval 17672 . . . . 5 ((𝑋 ∈ (Base‘𝑃) ∧ (𝑆‘(𝐽𝑀𝐽)) ∈ (Base‘𝑃)) → (𝑋 (𝑆‘(𝐽𝑀𝐽))) = (𝑋(+g𝑃)((invg𝑃)‘(𝑆‘(𝐽𝑀𝐽)))))
4316, 39, 42syl2anc 565 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑋 (𝑆‘(𝐽𝑀𝐽))) = (𝑋(+g𝑃)((invg𝑃)‘(𝑆‘(𝐽𝑀𝐽)))))
4412, 20syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ LMod)
4544adantr 466 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝑃 ∈ LMod)
4612, 19syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ Ring)
4746adantr 466 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝑃 ∈ Ring)
48 eqid 2770 . . . . . . . 8 (invg‘(Scalar‘𝑃)) = (invg‘(Scalar‘𝑃))
498, 18, 21, 48, 41asclinvg 19555 . . . . . . 7 ((𝑃 ∈ LMod ∧ 𝑃 ∈ Ring ∧ (𝐽𝑀𝐽) ∈ (Base‘(Scalar‘𝑃))) → ((invg𝑃)‘(𝑆‘(𝐽𝑀𝐽))) = (𝑆‘((invg‘(Scalar‘𝑃))‘(𝐽𝑀𝐽))))
5045, 47, 38, 49syl3anc 1475 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → ((invg𝑃)‘(𝑆‘(𝐽𝑀𝐽))) = (𝑆‘((invg‘(Scalar‘𝑃))‘(𝐽𝑀𝐽))))
51 chpscmatgsum.i . . . . . . . . 9 𝐼 = (invg𝑅)
5234fveq2d 6336 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (invg𝑅) = (invg‘(Scalar‘𝑃)))
5352adantr 466 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (invg𝑅) = (invg‘(Scalar‘𝑃)))
5451, 53syl5req 2817 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (invg‘(Scalar‘𝑃)) = 𝐼)
5554fveq1d 6334 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → ((invg‘(Scalar‘𝑃))‘(𝐽𝑀𝐽)) = (𝐼‘(𝐽𝑀𝐽)))
5655fveq2d 6336 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑆‘((invg‘(Scalar‘𝑃))‘(𝐽𝑀𝐽))) = (𝑆‘(𝐼‘(𝐽𝑀𝐽))))
5750, 56eqtrd 2804 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → ((invg𝑃)‘(𝑆‘(𝐽𝑀𝐽))) = (𝑆‘(𝐼‘(𝐽𝑀𝐽))))
5857oveq2d 6808 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑋(+g𝑃)((invg𝑃)‘(𝑆‘(𝐽𝑀𝐽)))) = (𝑋(+g𝑃)(𝑆‘(𝐼‘(𝐽𝑀𝐽)))))
5943, 58eqtrd 2804 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑋 (𝑆‘(𝐽𝑀𝐽))) = (𝑋(+g𝑃)(𝑆‘(𝐼‘(𝐽𝑀𝐽)))))
6059oveq2d 6808 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → ((♯‘𝑁) (𝑋 (𝑆‘(𝐽𝑀𝐽)))) = ((♯‘𝑁) (𝑋(+g𝑃)(𝑆‘(𝐼‘(𝐽𝑀𝐽))))))
61 simplr 744 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝑅 ∈ CRing)
62 hashcl 13348 . . . . 5 (𝑁 ∈ Fin → (♯‘𝑁) ∈ ℕ0)
6362ad2antrr 697 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (♯‘𝑁) ∈ ℕ0)
64 ringgrp 18759 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
6511, 64syl 17 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Grp)
6665ad2antlr 698 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → 𝑅 ∈ Grp)
6730, 51grpinvcl 17674 . . . . 5 ((𝑅 ∈ Grp ∧ (𝐽𝑀𝐽) ∈ (Base‘𝑅)) → (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝑅))
6866, 32, 67syl2anc 565 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝑅))
69 eqid 2770 . . . . 5 (.r𝑃) = (.r𝑃)
70 chpscmatgsum.f . . . . 5 𝐹 = (.g𝑃)
71 chpscmatgsum.h . . . . 5 𝐻 = (mulGrp‘𝑅)
72 chpscmatgsum.e . . . . 5 𝐸 = (.g𝐻)
732, 4, 40, 69, 70, 5, 6, 30, 8, 71, 72lply1binomsc 19891 . . . 4 ((𝑅 ∈ CRing ∧ (♯‘𝑁) ∈ ℕ0 ∧ (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝑅)) → ((♯‘𝑁) (𝑋(+g𝑃)(𝑆‘(𝐼‘(𝐽𝑀𝐽))))) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((𝑆‘(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))))(.r𝑃)(𝑙 𝑋))))))
7461, 63, 68, 73syl3anc 1475 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → ((♯‘𝑁) (𝑋(+g𝑃)(𝑆‘(𝐼‘(𝐽𝑀𝐽))))) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((𝑆‘(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))))(.r𝑃)(𝑙 𝑋))))))
752ply1assa 19783 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
7675adantl 467 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ AssAlg)
7776ad2antrr 697 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → 𝑃 ∈ AssAlg)
7871ringmgp 18760 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐻 ∈ Mnd)
7912, 78syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐻 ∈ Mnd)
8079ad2antrr 697 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → 𝐻 ∈ Mnd)
81 fznn0sub 12579 . . . . . . . . . 10 (𝑙 ∈ (0...(♯‘𝑁)) → ((♯‘𝑁) − 𝑙) ∈ ℕ0)
8281adantl 467 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → ((♯‘𝑁) − 𝑙) ∈ ℕ0)
8371, 30mgpbas 18702 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝐻)
8468, 83syl6eleq 2859 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝐻))
8584adantr 466 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝐻))
86 eqid 2770 . . . . . . . . . 10 (Base‘𝐻) = (Base‘𝐻)
8786, 72mulgnn0cl 17765 . . . . . . . . 9 ((𝐻 ∈ Mnd ∧ ((♯‘𝑁) − 𝑙) ∈ ℕ0 ∧ (𝐼‘(𝐽𝑀𝐽)) ∈ (Base‘𝐻)) → (((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) ∈ (Base‘𝐻))
8880, 82, 85, 87syl3anc 1475 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) ∈ (Base‘𝐻))
8935fveq2d 6336 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
9089, 83syl6eq 2820 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Base‘(Scalar‘𝑃)) = (Base‘𝐻))
9190ad2antrr 697 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (Base‘(Scalar‘𝑃)) = (Base‘𝐻))
9288, 91eleqtrrd 2852 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) ∈ (Base‘(Scalar‘𝑃)))
935ringmgp 18760 . . . . . . . . . . 11 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
9411, 19, 933syl 18 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝐺 ∈ Mnd)
9594ad2antlr 698 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → 𝐺 ∈ Mnd)
96 elfznn0 12639 . . . . . . . . . 10 (𝑙 ∈ (0...(♯‘𝑁)) → 𝑙 ∈ ℕ0)
9796adantl 467 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → 𝑙 ∈ ℕ0)
9815adantr 466 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → 𝑋 ∈ (Base‘𝑃))
995, 13mgpbas 18702 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝐺)
10099, 6mulgnn0cl 17765 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑙 ∈ ℕ0𝑋 ∈ (Base‘𝑃)) → (𝑙 𝑋) ∈ (Base‘𝑃))
10195, 97, 98, 100syl3anc 1475 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (𝑙 𝑋) ∈ (Base‘𝑃))
102101adantlr 686 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (𝑙 𝑋) ∈ (Base‘𝑃))
103 chpscmatgsum.s . . . . . . . 8 · = ( ·𝑠𝑃)
1048, 18, 21, 13, 69, 103asclmul1 19553 . . . . . . 7 ((𝑃 ∈ AssAlg ∧ (((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑙 𝑋) ∈ (Base‘𝑃)) → ((𝑆‘(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))))(.r𝑃)(𝑙 𝑋)) = ((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 𝑋)))
10577, 92, 102, 104syl3anc 1475 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → ((𝑆‘(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))))(.r𝑃)(𝑙 𝑋)) = ((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 𝑋)))
106105oveq2d 6808 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) ∧ 𝑙 ∈ (0...(♯‘𝑁))) → (((♯‘𝑁)C𝑙)𝐹((𝑆‘(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))))(.r𝑃)(𝑙 𝑋))) = (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 𝑋))))
107106mpteq2dva 4876 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((𝑆‘(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))))(.r𝑃)(𝑙 𝑋)))) = (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 𝑋)))))
108107oveq2d 6808 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((𝑆‘(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))))(.r𝑃)(𝑙 𝑋))))) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 𝑋))))))
10974, 108eqtrd 2804 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → ((♯‘𝑁) (𝑋(+g𝑃)(𝑆‘(𝐼‘(𝐽𝑀𝐽))))) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 𝑋))))))
11010, 60, 1093eqtrd 2808 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶𝑀) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  wral 3060  wrex 3061  {crab 3064  ifcif 4223  cmpt 4861  wf 6027  cfv 6031  (class class class)co 6792  Fincfn 8108  0cc0 10137  cmin 10467  0cn0 11493  ...cfz 12532  Ccbc 13292  chash 13320  Basecbs 16063  +gcplusg 16148  .rcmulr 16149  Scalarcsca 16151   ·𝑠 cvsca 16152  0gc0g 16307   Σg cgsu 16308  Mndcmnd 17501  Grpcgrp 17629  invgcminusg 17630  -gcsg 17631  .gcmg 17747  mulGrpcmgp 18696  Ringcrg 18754  CRingccrg 18755  LModclmod 19072  AssAlgcasa 19523  algSccascl 19525  var1cv1 19760  Poly1cpl1 19761   Mat cmat 20429   CharPlyMat cchpmat 20850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-addf 10216  ax-mulf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-xor 1612  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-ot 4323  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-ofr 7044  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-sup 8503  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-xnn0 11565  df-z 11579  df-dec 11695  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-fac 13264  df-bc 13293  df-hash 13321  df-word 13494  df-lsw 13495  df-concat 13496  df-s1 13497  df-substr 13498  df-splice 13499  df-reverse 13500  df-s2 13801  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-0g 16309  df-gsum 16310  df-prds 16315  df-pws 16317  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-mulg 17748  df-subg 17798  df-ghm 17865  df-gim 17908  df-cntz 17956  df-oppg 17982  df-symg 18004  df-pmtr 18068  df-psgn 18117  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-srg 18713  df-ring 18756  df-cring 18757  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-dvr 18890  df-rnghom 18924  df-drng 18958  df-subrg 18987  df-lmod 19074  df-lss 19142  df-sra 19386  df-rgmod 19387  df-assa 19526  df-ascl 19528  df-psr 19570  df-mvr 19571  df-mpl 19572  df-opsr 19574  df-psr1 19764  df-vr1 19765  df-ply1 19766  df-cnfld 19961  df-zring 20033  df-zrh 20066  df-dsmm 20292  df-frlm 20307  df-mamu 20406  df-mat 20430  df-mdet 20608  df-mat2pmat 20731  df-chpmat 20851
This theorem is referenced by:  chpscmatgsummon  20869
  Copyright terms: Public domain W3C validator