| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > baerlem3 | Structured version Visualization version GIF version | ||
| Description: An equality that holds when 𝑋, 𝑌, 𝑍 are independent (non-colinear) vectors. Part (3) in [Baer] p. 45. TODO fix ref. (Contributed by NM, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| baerlem3.v | ⊢ 𝑉 = (Base‘𝑊) |
| baerlem3.m | ⊢ − = (-g‘𝑊) |
| baerlem3.o | ⊢ 0 = (0g‘𝑊) |
| baerlem3.s | ⊢ ⊕ = (LSSum‘𝑊) |
| baerlem3.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| baerlem3.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| baerlem3.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| baerlem3.c | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| baerlem3.d | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
| baerlem3.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| baerlem3.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| Ref | Expression |
|---|---|
| baerlem3 | ⊢ (𝜑 → (𝑁‘{(𝑌 − 𝑍)}) = (((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − 𝑌)}) ⊕ (𝑁‘{(𝑋 − 𝑍)})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baerlem3.v | . 2 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | baerlem3.m | . 2 ⊢ − = (-g‘𝑊) | |
| 3 | baerlem3.o | . 2 ⊢ 0 = (0g‘𝑊) | |
| 4 | baerlem3.s | . 2 ⊢ ⊕ = (LSSum‘𝑊) | |
| 5 | baerlem3.n | . 2 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 6 | baerlem3.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 7 | baerlem3.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 8 | baerlem3.c | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
| 9 | baerlem3.d | . 2 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) | |
| 10 | baerlem3.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 11 | baerlem3.z | . 2 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 12 | eqid 2729 | . 2 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 13 | eqid 2729 | . 2 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 14 | eqid 2729 | . 2 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 15 | eqid 2729 | . 2 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 16 | eqid 2729 | . 2 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
| 17 | eqid 2729 | . 2 ⊢ (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊)) | |
| 18 | eqid 2729 | . 2 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 19 | eqid 2729 | . 2 ⊢ (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊)) | |
| 20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | baerlem3lem2 41693 | 1 ⊢ (𝜑 → (𝑁‘{(𝑌 − 𝑍)}) = (((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − 𝑌)}) ⊕ (𝑁‘{(𝑋 − 𝑍)})))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 ∩ cin 3902 {csn 4577 {cpr 4579 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 invgcminusg 18813 -gcsg 18814 LSSumclsm 19513 LSpanclspn 20874 LVecclvec 21006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-cntz 19196 df-lsm 19515 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-drng 20616 df-lmod 20765 df-lss 20835 df-lsp 20875 df-lvec 21007 |
| This theorem is referenced by: mapdheq4lem 41714 |
| Copyright terms: Public domain | W3C validator |