| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > baerlem3 | Structured version Visualization version GIF version | ||
| Description: An equality that holds when 𝑋, 𝑌, 𝑍 are independent (non-colinear) vectors. Part (3) in [Baer] p. 45. TODO fix ref. (Contributed by NM, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| baerlem3.v | ⊢ 𝑉 = (Base‘𝑊) |
| baerlem3.m | ⊢ − = (-g‘𝑊) |
| baerlem3.o | ⊢ 0 = (0g‘𝑊) |
| baerlem3.s | ⊢ ⊕ = (LSSum‘𝑊) |
| baerlem3.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| baerlem3.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| baerlem3.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| baerlem3.c | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| baerlem3.d | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
| baerlem3.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| baerlem3.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| Ref | Expression |
|---|---|
| baerlem3 | ⊢ (𝜑 → (𝑁‘{(𝑌 − 𝑍)}) = (((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − 𝑌)}) ⊕ (𝑁‘{(𝑋 − 𝑍)})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baerlem3.v | . 2 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | baerlem3.m | . 2 ⊢ − = (-g‘𝑊) | |
| 3 | baerlem3.o | . 2 ⊢ 0 = (0g‘𝑊) | |
| 4 | baerlem3.s | . 2 ⊢ ⊕ = (LSSum‘𝑊) | |
| 5 | baerlem3.n | . 2 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 6 | baerlem3.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 7 | baerlem3.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 8 | baerlem3.c | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
| 9 | baerlem3.d | . 2 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) | |
| 10 | baerlem3.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 11 | baerlem3.z | . 2 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 12 | eqid 2735 | . 2 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 13 | eqid 2735 | . 2 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 14 | eqid 2735 | . 2 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 15 | eqid 2735 | . 2 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 16 | eqid 2735 | . 2 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
| 17 | eqid 2735 | . 2 ⊢ (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊)) | |
| 18 | eqid 2735 | . 2 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 19 | eqid 2735 | . 2 ⊢ (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊)) | |
| 20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | baerlem3lem2 41675 | 1 ⊢ (𝜑 → (𝑁‘{(𝑌 − 𝑍)}) = (((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − 𝑌)}) ⊕ (𝑁‘{(𝑋 − 𝑍)})))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 ∩ cin 3925 {csn 4601 {cpr 4603 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 +gcplusg 17269 Scalarcsca 17272 ·𝑠 cvsca 17273 0gc0g 17451 invgcminusg 18915 -gcsg 18916 LSSumclsm 19613 LSpanclspn 20926 LVecclvec 21058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-subg 19104 df-cntz 19298 df-lsm 19615 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-oppr 20295 df-dvdsr 20315 df-unit 20316 df-invr 20346 df-drng 20689 df-lmod 20817 df-lss 20887 df-lsp 20927 df-lvec 21059 |
| This theorem is referenced by: mapdheq4lem 41696 |
| Copyright terms: Public domain | W3C validator |