Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem3 Structured version   Visualization version   GIF version

Theorem baerlem3 41696
Description: An equality that holds when 𝑋, 𝑌, 𝑍 are independent (non-colinear) vectors. Part (3) in [Baer] p. 45. TODO fix ref. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
baerlem3 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))))

Proof of Theorem baerlem3
StepHypRef Expression
1 baerlem3.v . 2 𝑉 = (Base‘𝑊)
2 baerlem3.m . 2 = (-g𝑊)
3 baerlem3.o . 2 0 = (0g𝑊)
4 baerlem3.s . 2 = (LSSum‘𝑊)
5 baerlem3.n . 2 𝑁 = (LSpan‘𝑊)
6 baerlem3.w . 2 (𝜑𝑊 ∈ LVec)
7 baerlem3.x . 2 (𝜑𝑋𝑉)
8 baerlem3.c . 2 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
9 baerlem3.d . 2 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
10 baerlem3.y . 2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
11 baerlem3.z . 2 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
12 eqid 2729 . 2 (+g𝑊) = (+g𝑊)
13 eqid 2729 . 2 ( ·𝑠𝑊) = ( ·𝑠𝑊)
14 eqid 2729 . 2 (Scalar‘𝑊) = (Scalar‘𝑊)
15 eqid 2729 . 2 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
16 eqid 2729 . 2 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
17 eqid 2729 . 2 (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊))
18 eqid 2729 . 2 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
19 eqid 2729 . 2 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19baerlem3lem2 41693 1 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wne 2925  cdif 3900  cin 3902  {csn 4577  {cpr 4579  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  invgcminusg 18813  -gcsg 18814  LSSumclsm 19513  LSpanclspn 20874  LVecclvec 21006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cntz 19196  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lvec 21007
This theorem is referenced by:  mapdheq4lem  41714
  Copyright terms: Public domain W3C validator