Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5a Structured version   Visualization version   GIF version

Theorem baerlem5a 39725
Description: An equality that holds when 𝑋, 𝑌, 𝑍 are independent (non-colinear) vectors. First equation of part (5) in [Baer] p. 46. (Contributed by NM, 10-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem5a.p + = (+g𝑊)
Assertion
Ref Expression
baerlem5a (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))

Proof of Theorem baerlem5a
StepHypRef Expression
1 baerlem3.v . 2 𝑉 = (Base‘𝑊)
2 baerlem3.m . 2 = (-g𝑊)
3 baerlem3.o . 2 0 = (0g𝑊)
4 baerlem3.s . 2 = (LSSum‘𝑊)
5 baerlem3.n . 2 𝑁 = (LSpan‘𝑊)
6 baerlem3.w . 2 (𝜑𝑊 ∈ LVec)
7 baerlem3.x . 2 (𝜑𝑋𝑉)
8 baerlem3.c . 2 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
9 baerlem3.d . 2 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
10 baerlem3.y . 2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
11 baerlem3.z . 2 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
12 baerlem5a.p . 2 + = (+g𝑊)
13 eqid 2738 . 2 ( ·𝑠𝑊) = ( ·𝑠𝑊)
14 eqid 2738 . 2 (Scalar‘𝑊) = (Scalar‘𝑊)
15 eqid 2738 . 2 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
16 eqid 2738 . 2 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
17 eqid 2738 . 2 (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊))
18 eqid 2738 . 2 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
19 eqid 2738 . 2 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19baerlem5alem2 39722 1 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  wne 2943  cdif 3885  cin 3887  {csn 4563  {cpr 4565  cfv 6435  (class class class)co 7277  Basecbs 16910  +gcplusg 16960  Scalarcsca 16963   ·𝑠 cvsca 16964  0gc0g 17148  invgcminusg 18576  -gcsg 18577  LSSumclsm 19237  LSpanclspn 20231  LVecclvec 20362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8040  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-er 8496  df-en 8732  df-dom 8733  df-sdom 8734  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-3 12035  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-grp 18578  df-minusg 18579  df-sbg 18580  df-subg 18750  df-cntz 18921  df-lsm 19239  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-ring 19783  df-oppr 19860  df-dvdsr 19881  df-unit 19882  df-invr 19912  df-drng 19991  df-lmod 20123  df-lss 20192  df-lsp 20232  df-lvec 20363
This theorem is referenced by:  baerlem5amN  39727  baerlem5abmN  39729  mapdh6lem1N  39744  hdmap1l6lem1  39818
  Copyright terms: Public domain W3C validator