![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bits0o | Structured version Visualization version GIF version |
Description: The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
bits0o | ⊢ (𝑁 ∈ ℤ → 0 ∈ (bits‘((2 · 𝑁) + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 11761 | . . . 4 ⊢ 2 ∈ ℤ | |
2 | dvdsmul1 15410 | . . . 4 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 2 ∥ (2 · 𝑁)) | |
3 | 1, 2 | mpan 680 | . . 3 ⊢ (𝑁 ∈ ℤ → 2 ∥ (2 · 𝑁)) |
4 | 1 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℤ) |
5 | id 22 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℤ) | |
6 | 4, 5 | zmulcld 11840 | . . . 4 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ) |
7 | 2nn 11448 | . . . . 5 ⊢ 2 ∈ ℕ | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℕ) |
9 | 1lt2 11553 | . . . . 5 ⊢ 1 < 2 | |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 < 2) |
11 | ndvdsp1 15541 | . . . 4 ⊢ (((2 · 𝑁) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ (2 · 𝑁) → ¬ 2 ∥ ((2 · 𝑁) + 1))) | |
12 | 6, 8, 10, 11 | syl3anc 1439 | . . 3 ⊢ (𝑁 ∈ ℤ → (2 ∥ (2 · 𝑁) → ¬ 2 ∥ ((2 · 𝑁) + 1))) |
13 | 3, 12 | mpd 15 | . 2 ⊢ (𝑁 ∈ ℤ → ¬ 2 ∥ ((2 · 𝑁) + 1)) |
14 | 6 | peano2zd 11837 | . . 3 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ) |
15 | bits0 15556 | . . 3 ⊢ (((2 · 𝑁) + 1) ∈ ℤ → (0 ∈ (bits‘((2 · 𝑁) + 1)) ↔ ¬ 2 ∥ ((2 · 𝑁) + 1))) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘((2 · 𝑁) + 1)) ↔ ¬ 2 ∥ ((2 · 𝑁) + 1))) |
17 | 13, 16 | mpbird 249 | 1 ⊢ (𝑁 ∈ ℤ → 0 ∈ (bits‘((2 · 𝑁) + 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∈ wcel 2106 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 0cc0 10272 1c1 10273 + caddc 10275 · cmul 10277 < clt 10411 ℕcn 11374 2c2 11430 ℤcz 11728 ∥ cdvds 15387 bitscbits 15547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-sup 8636 df-inf 8637 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-fz 12644 df-fl 12912 df-seq 13120 df-exp 13179 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-dvds 15388 df-bits 15550 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |