![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bits0o | Structured version Visualization version GIF version |
Description: The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
bits0o | β’ (π β β€ β 0 β (bitsβ((2 Β· π) + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12595 | . . . 4 β’ 2 β β€ | |
2 | dvdsmul1 16226 | . . . 4 β’ ((2 β β€ β§ π β β€) β 2 β₯ (2 Β· π)) | |
3 | 1, 2 | mpan 687 | . . 3 β’ (π β β€ β 2 β₯ (2 Β· π)) |
4 | 1 | a1i 11 | . . . . 5 β’ (π β β€ β 2 β β€) |
5 | id 22 | . . . . 5 β’ (π β β€ β π β β€) | |
6 | 4, 5 | zmulcld 12673 | . . . 4 β’ (π β β€ β (2 Β· π) β β€) |
7 | 2nn 12286 | . . . . 5 β’ 2 β β | |
8 | 7 | a1i 11 | . . . 4 β’ (π β β€ β 2 β β) |
9 | 1lt2 12384 | . . . . 5 β’ 1 < 2 | |
10 | 9 | a1i 11 | . . . 4 β’ (π β β€ β 1 < 2) |
11 | ndvdsp1 16359 | . . . 4 β’ (((2 Β· π) β β€ β§ 2 β β β§ 1 < 2) β (2 β₯ (2 Β· π) β Β¬ 2 β₯ ((2 Β· π) + 1))) | |
12 | 6, 8, 10, 11 | syl3anc 1368 | . . 3 β’ (π β β€ β (2 β₯ (2 Β· π) β Β¬ 2 β₯ ((2 Β· π) + 1))) |
13 | 3, 12 | mpd 15 | . 2 β’ (π β β€ β Β¬ 2 β₯ ((2 Β· π) + 1)) |
14 | 6 | peano2zd 12670 | . . 3 β’ (π β β€ β ((2 Β· π) + 1) β β€) |
15 | bits0 16374 | . . 3 β’ (((2 Β· π) + 1) β β€ β (0 β (bitsβ((2 Β· π) + 1)) β Β¬ 2 β₯ ((2 Β· π) + 1))) | |
16 | 14, 15 | syl 17 | . 2 β’ (π β β€ β (0 β (bitsβ((2 Β· π) + 1)) β Β¬ 2 β₯ ((2 Β· π) + 1))) |
17 | 13, 16 | mpbird 257 | 1 β’ (π β β€ β 0 β (bitsβ((2 Β· π) + 1))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β wcel 2098 class class class wbr 5141 βcfv 6536 (class class class)co 7404 0cc0 11109 1c1 11110 + caddc 11112 Β· cmul 11114 < clt 11249 βcn 12213 2c2 12268 β€cz 12559 β₯ cdvds 16202 bitscbits 16365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-rp 12978 df-fz 13488 df-fl 13760 df-seq 13970 df-exp 14031 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-dvds 16203 df-bits 16368 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |