MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bits0o Structured version   Visualization version   GIF version

Theorem bits0o 16430
Description: The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bits0o (𝑁 ∈ ℤ → 0 ∈ (bits‘((2 · 𝑁) + 1)))

Proof of Theorem bits0o
StepHypRef Expression
1 2z 12646 . . . 4 2 ∈ ℤ
2 dvdsmul1 16280 . . . 4 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 2 ∥ (2 · 𝑁))
31, 2mpan 688 . . 3 (𝑁 ∈ ℤ → 2 ∥ (2 · 𝑁))
41a1i 11 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℤ)
5 id 22 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
64, 5zmulcld 12724 . . . 4 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
7 2nn 12337 . . . . 5 2 ∈ ℕ
87a1i 11 . . . 4 (𝑁 ∈ ℤ → 2 ∈ ℕ)
9 1lt2 12435 . . . . 5 1 < 2
109a1i 11 . . . 4 (𝑁 ∈ ℤ → 1 < 2)
11 ndvdsp1 16413 . . . 4 (((2 · 𝑁) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ (2 · 𝑁) → ¬ 2 ∥ ((2 · 𝑁) + 1)))
126, 8, 10, 11syl3anc 1368 . . 3 (𝑁 ∈ ℤ → (2 ∥ (2 · 𝑁) → ¬ 2 ∥ ((2 · 𝑁) + 1)))
133, 12mpd 15 . 2 (𝑁 ∈ ℤ → ¬ 2 ∥ ((2 · 𝑁) + 1))
146peano2zd 12721 . . 3 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ)
15 bits0 16428 . . 3 (((2 · 𝑁) + 1) ∈ ℤ → (0 ∈ (bits‘((2 · 𝑁) + 1)) ↔ ¬ 2 ∥ ((2 · 𝑁) + 1)))
1614, 15syl 17 . 2 (𝑁 ∈ ℤ → (0 ∈ (bits‘((2 · 𝑁) + 1)) ↔ ¬ 2 ∥ ((2 · 𝑁) + 1)))
1713, 16mpbird 256 1 (𝑁 ∈ ℤ → 0 ∈ (bits‘((2 · 𝑁) + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wcel 2099   class class class wbr 5153  cfv 6554  (class class class)co 7424  0cc0 11158  1c1 11159   + caddc 11161   · cmul 11163   < clt 11298  cn 12264  2c2 12319  cz 12610  cdvds 16256  bitscbits 16419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-fz 13539  df-fl 13812  df-seq 14022  df-exp 14082  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-dvds 16257  df-bits 16422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator