| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climrecf | Structured version Visualization version GIF version | ||
| Description: A version of climrec 45599 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| climrecf.1 | ⊢ Ⅎ𝑘𝜑 |
| climrecf.2 | ⊢ Ⅎ𝑘𝐺 |
| climrecf.3 | ⊢ Ⅎ𝑘𝐻 |
| climrecf.4 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climrecf.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climrecf.6 | ⊢ (𝜑 → 𝐺 ⇝ 𝐴) |
| climrecf.7 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| climrecf.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) |
| climrecf.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) |
| climrecf.10 | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| climrecf | ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climrecf.4 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climrecf.5 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climrecf.6 | . 2 ⊢ (𝜑 → 𝐺 ⇝ 𝐴) | |
| 4 | climrecf.7 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 5 | climrecf.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 6 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
| 7 | 5, 6 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
| 8 | climrecf.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
| 9 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
| 10 | 8, 9 | nffv 6891 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
| 11 | 10 | nfel1 2916 | . . . 4 ⊢ Ⅎ𝑘(𝐺‘𝑗) ∈ (ℂ ∖ {0}) |
| 12 | 7, 11 | nfim 1896 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ (ℂ ∖ {0})) |
| 13 | eleq1w 2818 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
| 14 | 13 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
| 15 | fveq2 6881 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
| 16 | 15 | eleq1d 2820 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐺‘𝑘) ∈ (ℂ ∖ {0}) ↔ (𝐺‘𝑗) ∈ (ℂ ∖ {0}))) |
| 17 | 14, 16 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ (ℂ ∖ {0})))) |
| 18 | climrecf.8 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) | |
| 19 | 12, 17, 18 | chvarfv 2241 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ (ℂ ∖ {0})) |
| 20 | climrecf.3 | . . . . . 6 ⊢ Ⅎ𝑘𝐻 | |
| 21 | 20, 9 | nffv 6891 | . . . . 5 ⊢ Ⅎ𝑘(𝐻‘𝑗) |
| 22 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑘1 | |
| 23 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑘 / | |
| 24 | 22, 23, 10 | nfov 7440 | . . . . 5 ⊢ Ⅎ𝑘(1 / (𝐺‘𝑗)) |
| 25 | 21, 24 | nfeq 2913 | . . . 4 ⊢ Ⅎ𝑘(𝐻‘𝑗) = (1 / (𝐺‘𝑗)) |
| 26 | 7, 25 | nfim 1896 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (1 / (𝐺‘𝑗))) |
| 27 | fveq2 6881 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐻‘𝑘) = (𝐻‘𝑗)) | |
| 28 | 15 | oveq2d 7426 | . . . . 5 ⊢ (𝑘 = 𝑗 → (1 / (𝐺‘𝑘)) = (1 / (𝐺‘𝑗))) |
| 29 | 27, 28 | eqeq12d 2752 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐻‘𝑘) = (1 / (𝐺‘𝑘)) ↔ (𝐻‘𝑗) = (1 / (𝐺‘𝑗)))) |
| 30 | 14, 29 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (1 / (𝐺‘𝑗))))) |
| 31 | climrecf.9 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) | |
| 32 | 26, 30, 31 | chvarfv 2241 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (1 / (𝐺‘𝑗))) |
| 33 | climrecf.10 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
| 34 | 1, 2, 3, 4, 19, 32, 33 | climrec 45599 | 1 ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2884 ≠ wne 2933 ∖ cdif 3928 {csn 4606 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 1c1 11135 / cdiv 11899 ℤcz 12593 ℤ≥cuz 12857 ⇝ cli 15505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 |
| This theorem is referenced by: climdivf 45608 |
| Copyright terms: Public domain | W3C validator |