Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrecf Structured version   Visualization version   GIF version

Theorem climrecf 45614
Description: A version of climrec 45608 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climrecf.1 𝑘𝜑
climrecf.2 𝑘𝐺
climrecf.3 𝑘𝐻
climrecf.4 𝑍 = (ℤ𝑀)
climrecf.5 (𝜑𝑀 ∈ ℤ)
climrecf.6 (𝜑𝐺𝐴)
climrecf.7 (𝜑𝐴 ≠ 0)
climrecf.8 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
climrecf.9 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
climrecf.10 (𝜑𝐻𝑊)
Assertion
Ref Expression
climrecf (𝜑𝐻 ⇝ (1 / 𝐴))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑊(𝑘)

Proof of Theorem climrecf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climrecf.4 . 2 𝑍 = (ℤ𝑀)
2 climrecf.5 . 2 (𝜑𝑀 ∈ ℤ)
3 climrecf.6 . 2 (𝜑𝐺𝐴)
4 climrecf.7 . 2 (𝜑𝐴 ≠ 0)
5 climrecf.1 . . . . 5 𝑘𝜑
6 nfv 1914 . . . . 5 𝑘 𝑗𝑍
75, 6nfan 1899 . . . 4 𝑘(𝜑𝑗𝑍)
8 climrecf.2 . . . . . 6 𝑘𝐺
9 nfcv 2892 . . . . . 6 𝑘𝑗
108, 9nffv 6871 . . . . 5 𝑘(𝐺𝑗)
1110nfel1 2909 . . . 4 𝑘(𝐺𝑗) ∈ (ℂ ∖ {0})
127, 11nfim 1896 . . 3 𝑘((𝜑𝑗𝑍) → (𝐺𝑗) ∈ (ℂ ∖ {0}))
13 eleq1w 2812 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1413anbi2d 630 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
15 fveq2 6861 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
1615eleq1d 2814 . . . 4 (𝑘 = 𝑗 → ((𝐺𝑘) ∈ (ℂ ∖ {0}) ↔ (𝐺𝑗) ∈ (ℂ ∖ {0})))
1714, 16imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0})) ↔ ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ (ℂ ∖ {0}))))
18 climrecf.8 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
1912, 17, 18chvarfv 2241 . 2 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ (ℂ ∖ {0}))
20 climrecf.3 . . . . . 6 𝑘𝐻
2120, 9nffv 6871 . . . . 5 𝑘(𝐻𝑗)
22 nfcv 2892 . . . . . 6 𝑘1
23 nfcv 2892 . . . . . 6 𝑘 /
2422, 23, 10nfov 7420 . . . . 5 𝑘(1 / (𝐺𝑗))
2521, 24nfeq 2906 . . . 4 𝑘(𝐻𝑗) = (1 / (𝐺𝑗))
267, 25nfim 1896 . . 3 𝑘((𝜑𝑗𝑍) → (𝐻𝑗) = (1 / (𝐺𝑗)))
27 fveq2 6861 . . . . 5 (𝑘 = 𝑗 → (𝐻𝑘) = (𝐻𝑗))
2815oveq2d 7406 . . . . 5 (𝑘 = 𝑗 → (1 / (𝐺𝑘)) = (1 / (𝐺𝑗)))
2927, 28eqeq12d 2746 . . . 4 (𝑘 = 𝑗 → ((𝐻𝑘) = (1 / (𝐺𝑘)) ↔ (𝐻𝑗) = (1 / (𝐺𝑗))))
3014, 29imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘))) ↔ ((𝜑𝑗𝑍) → (𝐻𝑗) = (1 / (𝐺𝑗)))))
31 climrecf.9 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
3226, 30, 31chvarfv 2241 . 2 ((𝜑𝑗𝑍) → (𝐻𝑗) = (1 / (𝐺𝑗)))
33 climrecf.10 . 2 (𝜑𝐻𝑊)
341, 2, 3, 4, 19, 32, 33climrec 45608 1 (𝜑𝐻 ⇝ (1 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2877  wne 2926  cdif 3914  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   / cdiv 11842  cz 12536  cuz 12800  cli 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461
This theorem is referenced by:  climdivf  45617
  Copyright terms: Public domain W3C validator