Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climrecf | Structured version Visualization version GIF version |
Description: A version of climrec 43388 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
climrecf.1 | ⊢ Ⅎ𝑘𝜑 |
climrecf.2 | ⊢ Ⅎ𝑘𝐺 |
climrecf.3 | ⊢ Ⅎ𝑘𝐻 |
climrecf.4 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climrecf.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climrecf.6 | ⊢ (𝜑 → 𝐺 ⇝ 𝐴) |
climrecf.7 | ⊢ (𝜑 → 𝐴 ≠ 0) |
climrecf.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) |
climrecf.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) |
climrecf.10 | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
Ref | Expression |
---|---|
climrecf | ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climrecf.4 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climrecf.5 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climrecf.6 | . 2 ⊢ (𝜑 → 𝐺 ⇝ 𝐴) | |
4 | climrecf.7 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
5 | climrecf.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
6 | nfv 1916 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
7 | 5, 6 | nfan 1901 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
8 | climrecf.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
9 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
10 | 8, 9 | nffv 6819 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
11 | 10 | nfel1 2921 | . . . 4 ⊢ Ⅎ𝑘(𝐺‘𝑗) ∈ (ℂ ∖ {0}) |
12 | 7, 11 | nfim 1898 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ (ℂ ∖ {0})) |
13 | eleq1w 2820 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
14 | 13 | anbi2d 629 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
15 | fveq2 6809 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
16 | 15 | eleq1d 2822 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐺‘𝑘) ∈ (ℂ ∖ {0}) ↔ (𝐺‘𝑗) ∈ (ℂ ∖ {0}))) |
17 | 14, 16 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ (ℂ ∖ {0})))) |
18 | climrecf.8 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) | |
19 | 12, 17, 18 | chvarfv 2232 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ (ℂ ∖ {0})) |
20 | climrecf.3 | . . . . . 6 ⊢ Ⅎ𝑘𝐻 | |
21 | 20, 9 | nffv 6819 | . . . . 5 ⊢ Ⅎ𝑘(𝐻‘𝑗) |
22 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑘1 | |
23 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑘 / | |
24 | 22, 23, 10 | nfov 7343 | . . . . 5 ⊢ Ⅎ𝑘(1 / (𝐺‘𝑗)) |
25 | 21, 24 | nfeq 2918 | . . . 4 ⊢ Ⅎ𝑘(𝐻‘𝑗) = (1 / (𝐺‘𝑗)) |
26 | 7, 25 | nfim 1898 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (1 / (𝐺‘𝑗))) |
27 | fveq2 6809 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐻‘𝑘) = (𝐻‘𝑗)) | |
28 | 15 | oveq2d 7329 | . . . . 5 ⊢ (𝑘 = 𝑗 → (1 / (𝐺‘𝑘)) = (1 / (𝐺‘𝑗))) |
29 | 27, 28 | eqeq12d 2753 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐻‘𝑘) = (1 / (𝐺‘𝑘)) ↔ (𝐻‘𝑗) = (1 / (𝐺‘𝑗)))) |
30 | 14, 29 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (1 / (𝐺‘𝑗))))) |
31 | climrecf.9 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) | |
32 | 26, 30, 31 | chvarfv 2232 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (1 / (𝐺‘𝑗))) |
33 | climrecf.10 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
34 | 1, 2, 3, 4, 19, 32, 33 | climrec 43388 | 1 ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2885 ≠ wne 2941 ∖ cdif 3893 {csn 4569 class class class wbr 5085 ‘cfv 6463 (class class class)co 7313 ℂcc 10939 0cc0 10941 1c1 10942 / cdiv 11702 ℤcz 12389 ℤ≥cuz 12652 ⇝ cli 15262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-pre-sup 11019 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-sup 9269 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-3 12107 df-n0 12304 df-z 12390 df-uz 12653 df-rp 12801 df-seq 13792 df-exp 13853 df-cj 14879 df-re 14880 df-im 14881 df-sqrt 15015 df-abs 15016 df-clim 15266 |
This theorem is referenced by: climdivf 43397 |
Copyright terms: Public domain | W3C validator |