Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrecf Structured version   Visualization version   GIF version

Theorem climrecf 40573
Description: A version of climrec 40567 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climrecf.1 𝑘𝜑
climrecf.2 𝑘𝐺
climrecf.3 𝑘𝐻
climrecf.4 𝑍 = (ℤ𝑀)
climrecf.5 (𝜑𝑀 ∈ ℤ)
climrecf.6 (𝜑𝐺𝐴)
climrecf.7 (𝜑𝐴 ≠ 0)
climrecf.8 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
climrecf.9 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
climrecf.10 (𝜑𝐻𝑊)
Assertion
Ref Expression
climrecf (𝜑𝐻 ⇝ (1 / 𝐴))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑊(𝑘)

Proof of Theorem climrecf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climrecf.4 . 2 𝑍 = (ℤ𝑀)
2 climrecf.5 . 2 (𝜑𝑀 ∈ ℤ)
3 climrecf.6 . 2 (𝜑𝐺𝐴)
4 climrecf.7 . 2 (𝜑𝐴 ≠ 0)
5 climrecf.1 . . . . 5 𝑘𝜑
6 nfv 2010 . . . . 5 𝑘 𝑗𝑍
75, 6nfan 1999 . . . 4 𝑘(𝜑𝑗𝑍)
8 climrecf.2 . . . . . 6 𝑘𝐺
9 nfcv 2939 . . . . . 6 𝑘𝑗
108, 9nffv 6419 . . . . 5 𝑘(𝐺𝑗)
1110nfel1 2954 . . . 4 𝑘(𝐺𝑗) ∈ (ℂ ∖ {0})
127, 11nfim 1996 . . 3 𝑘((𝜑𝑗𝑍) → (𝐺𝑗) ∈ (ℂ ∖ {0}))
13 eleq1w 2859 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1413anbi2d 623 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
15 fveq2 6409 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
1615eleq1d 2861 . . . 4 (𝑘 = 𝑗 → ((𝐺𝑘) ∈ (ℂ ∖ {0}) ↔ (𝐺𝑗) ∈ (ℂ ∖ {0})))
1714, 16imbi12d 336 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0})) ↔ ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ (ℂ ∖ {0}))))
18 climrecf.8 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
1912, 17, 18chvar 2379 . 2 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ (ℂ ∖ {0}))
20 climrecf.3 . . . . . 6 𝑘𝐻
2120, 9nffv 6419 . . . . 5 𝑘(𝐻𝑗)
22 nfcv 2939 . . . . . 6 𝑘1
23 nfcv 2939 . . . . . 6 𝑘 /
2422, 23, 10nfov 6906 . . . . 5 𝑘(1 / (𝐺𝑗))
2521, 24nfeq 2951 . . . 4 𝑘(𝐻𝑗) = (1 / (𝐺𝑗))
267, 25nfim 1996 . . 3 𝑘((𝜑𝑗𝑍) → (𝐻𝑗) = (1 / (𝐺𝑗)))
27 fveq2 6409 . . . . 5 (𝑘 = 𝑗 → (𝐻𝑘) = (𝐻𝑗))
2815oveq2d 6892 . . . . 5 (𝑘 = 𝑗 → (1 / (𝐺𝑘)) = (1 / (𝐺𝑗)))
2927, 28eqeq12d 2812 . . . 4 (𝑘 = 𝑗 → ((𝐻𝑘) = (1 / (𝐺𝑘)) ↔ (𝐻𝑗) = (1 / (𝐺𝑗))))
3014, 29imbi12d 336 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘))) ↔ ((𝜑𝑗𝑍) → (𝐻𝑗) = (1 / (𝐺𝑗)))))
31 climrecf.9 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
3226, 30, 31chvar 2379 . 2 ((𝜑𝑗𝑍) → (𝐻𝑗) = (1 / (𝐺𝑗)))
33 climrecf.10 . 2 (𝜑𝐻𝑊)
341, 2, 3, 4, 19, 32, 33climrec 40567 1 (𝜑𝐻 ⇝ (1 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wnf 1879  wcel 2157  wnfc 2926  wne 2969  cdif 3764  {csn 4366   class class class wbr 4841  cfv 6099  (class class class)co 6876  cc 10220  0cc0 10222  1c1 10223   / cdiv 10974  cz 11662  cuz 11926  cli 14553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299  ax-pre-sup 10300
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-sup 8588  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-div 10975  df-nn 11311  df-2 11372  df-3 11373  df-n0 11577  df-z 11663  df-uz 11927  df-rp 12071  df-seq 13052  df-exp 13111  df-cj 14177  df-re 14178  df-im 14179  df-sqrt 14313  df-abs 14314  df-clim 14557
This theorem is referenced by:  climdivf  40576
  Copyright terms: Public domain W3C validator