Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrecf Structured version   Visualization version   GIF version

Theorem climrecf 45586
Description: A version of climrec 45580 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climrecf.1 𝑘𝜑
climrecf.2 𝑘𝐺
climrecf.3 𝑘𝐻
climrecf.4 𝑍 = (ℤ𝑀)
climrecf.5 (𝜑𝑀 ∈ ℤ)
climrecf.6 (𝜑𝐺𝐴)
climrecf.7 (𝜑𝐴 ≠ 0)
climrecf.8 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
climrecf.9 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
climrecf.10 (𝜑𝐻𝑊)
Assertion
Ref Expression
climrecf (𝜑𝐻 ⇝ (1 / 𝐴))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑊(𝑘)

Proof of Theorem climrecf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climrecf.4 . 2 𝑍 = (ℤ𝑀)
2 climrecf.5 . 2 (𝜑𝑀 ∈ ℤ)
3 climrecf.6 . 2 (𝜑𝐺𝐴)
4 climrecf.7 . 2 (𝜑𝐴 ≠ 0)
5 climrecf.1 . . . . 5 𝑘𝜑
6 nfv 1914 . . . . 5 𝑘 𝑗𝑍
75, 6nfan 1899 . . . 4 𝑘(𝜑𝑗𝑍)
8 climrecf.2 . . . . . 6 𝑘𝐺
9 nfcv 2898 . . . . . 6 𝑘𝑗
108, 9nffv 6885 . . . . 5 𝑘(𝐺𝑗)
1110nfel1 2915 . . . 4 𝑘(𝐺𝑗) ∈ (ℂ ∖ {0})
127, 11nfim 1896 . . 3 𝑘((𝜑𝑗𝑍) → (𝐺𝑗) ∈ (ℂ ∖ {0}))
13 eleq1w 2817 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1413anbi2d 630 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
15 fveq2 6875 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
1615eleq1d 2819 . . . 4 (𝑘 = 𝑗 → ((𝐺𝑘) ∈ (ℂ ∖ {0}) ↔ (𝐺𝑗) ∈ (ℂ ∖ {0})))
1714, 16imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0})) ↔ ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ (ℂ ∖ {0}))))
18 climrecf.8 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
1912, 17, 18chvarfv 2240 . 2 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ (ℂ ∖ {0}))
20 climrecf.3 . . . . . 6 𝑘𝐻
2120, 9nffv 6885 . . . . 5 𝑘(𝐻𝑗)
22 nfcv 2898 . . . . . 6 𝑘1
23 nfcv 2898 . . . . . 6 𝑘 /
2422, 23, 10nfov 7433 . . . . 5 𝑘(1 / (𝐺𝑗))
2521, 24nfeq 2912 . . . 4 𝑘(𝐻𝑗) = (1 / (𝐺𝑗))
267, 25nfim 1896 . . 3 𝑘((𝜑𝑗𝑍) → (𝐻𝑗) = (1 / (𝐺𝑗)))
27 fveq2 6875 . . . . 5 (𝑘 = 𝑗 → (𝐻𝑘) = (𝐻𝑗))
2815oveq2d 7419 . . . . 5 (𝑘 = 𝑗 → (1 / (𝐺𝑘)) = (1 / (𝐺𝑗)))
2927, 28eqeq12d 2751 . . . 4 (𝑘 = 𝑗 → ((𝐻𝑘) = (1 / (𝐺𝑘)) ↔ (𝐻𝑗) = (1 / (𝐺𝑗))))
3014, 29imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘))) ↔ ((𝜑𝑗𝑍) → (𝐻𝑗) = (1 / (𝐺𝑗)))))
31 climrecf.9 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
3226, 30, 31chvarfv 2240 . 2 ((𝜑𝑗𝑍) → (𝐻𝑗) = (1 / (𝐺𝑗)))
33 climrecf.10 . 2 (𝜑𝐻𝑊)
341, 2, 3, 4, 19, 32, 33climrec 45580 1 (𝜑𝐻 ⇝ (1 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  wnfc 2883  wne 2932  cdif 3923  {csn 4601   class class class wbr 5119  cfv 6530  (class class class)co 7403  cc 11125  0cc0 11127  1c1 11128   / cdiv 11892  cz 12586  cuz 12850  cli 15498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-seq 14018  df-exp 14078  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502
This theorem is referenced by:  climdivf  45589
  Copyright terms: Public domain W3C validator