![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climrecf | Structured version Visualization version GIF version |
Description: A version of climrec 44319 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
climrecf.1 | ⊢ Ⅎ𝑘𝜑 |
climrecf.2 | ⊢ Ⅎ𝑘𝐺 |
climrecf.3 | ⊢ Ⅎ𝑘𝐻 |
climrecf.4 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climrecf.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climrecf.6 | ⊢ (𝜑 → 𝐺 ⇝ 𝐴) |
climrecf.7 | ⊢ (𝜑 → 𝐴 ≠ 0) |
climrecf.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) |
climrecf.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) |
climrecf.10 | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
Ref | Expression |
---|---|
climrecf | ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climrecf.4 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climrecf.5 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climrecf.6 | . 2 ⊢ (𝜑 → 𝐺 ⇝ 𝐴) | |
4 | climrecf.7 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
5 | climrecf.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
6 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
7 | 5, 6 | nfan 1903 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
8 | climrecf.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
9 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
10 | 8, 9 | nffv 6902 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
11 | 10 | nfel1 2920 | . . . 4 ⊢ Ⅎ𝑘(𝐺‘𝑗) ∈ (ℂ ∖ {0}) |
12 | 7, 11 | nfim 1900 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ (ℂ ∖ {0})) |
13 | eleq1w 2817 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
14 | 13 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
15 | fveq2 6892 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
16 | 15 | eleq1d 2819 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐺‘𝑘) ∈ (ℂ ∖ {0}) ↔ (𝐺‘𝑗) ∈ (ℂ ∖ {0}))) |
17 | 14, 16 | imbi12d 345 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ (ℂ ∖ {0})))) |
18 | climrecf.8 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) | |
19 | 12, 17, 18 | chvarfv 2234 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ (ℂ ∖ {0})) |
20 | climrecf.3 | . . . . . 6 ⊢ Ⅎ𝑘𝐻 | |
21 | 20, 9 | nffv 6902 | . . . . 5 ⊢ Ⅎ𝑘(𝐻‘𝑗) |
22 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑘1 | |
23 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑘 / | |
24 | 22, 23, 10 | nfov 7439 | . . . . 5 ⊢ Ⅎ𝑘(1 / (𝐺‘𝑗)) |
25 | 21, 24 | nfeq 2917 | . . . 4 ⊢ Ⅎ𝑘(𝐻‘𝑗) = (1 / (𝐺‘𝑗)) |
26 | 7, 25 | nfim 1900 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (1 / (𝐺‘𝑗))) |
27 | fveq2 6892 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐻‘𝑘) = (𝐻‘𝑗)) | |
28 | 15 | oveq2d 7425 | . . . . 5 ⊢ (𝑘 = 𝑗 → (1 / (𝐺‘𝑘)) = (1 / (𝐺‘𝑗))) |
29 | 27, 28 | eqeq12d 2749 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐻‘𝑘) = (1 / (𝐺‘𝑘)) ↔ (𝐻‘𝑗) = (1 / (𝐺‘𝑗)))) |
30 | 14, 29 | imbi12d 345 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (1 / (𝐺‘𝑗))))) |
31 | climrecf.9 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) | |
32 | 26, 30, 31 | chvarfv 2234 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (1 / (𝐺‘𝑗))) |
33 | climrecf.10 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
34 | 1, 2, 3, 4, 19, 32, 33 | climrec 44319 | 1 ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2884 ≠ wne 2941 ∖ cdif 3946 {csn 4629 class class class wbr 5149 ‘cfv 6544 (class class class)co 7409 ℂcc 11108 0cc0 11110 1c1 11111 / cdiv 11871 ℤcz 12558 ℤ≥cuz 12822 ⇝ cli 15428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-clim 15432 |
This theorem is referenced by: climdivf 44328 |
Copyright terms: Public domain | W3C validator |