Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrecf Structured version   Visualization version   GIF version

Theorem climrecf 42294
 Description: A version of climrec 42288 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climrecf.1 𝑘𝜑
climrecf.2 𝑘𝐺
climrecf.3 𝑘𝐻
climrecf.4 𝑍 = (ℤ𝑀)
climrecf.5 (𝜑𝑀 ∈ ℤ)
climrecf.6 (𝜑𝐺𝐴)
climrecf.7 (𝜑𝐴 ≠ 0)
climrecf.8 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
climrecf.9 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
climrecf.10 (𝜑𝐻𝑊)
Assertion
Ref Expression
climrecf (𝜑𝐻 ⇝ (1 / 𝐴))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑊(𝑘)

Proof of Theorem climrecf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climrecf.4 . 2 𝑍 = (ℤ𝑀)
2 climrecf.5 . 2 (𝜑𝑀 ∈ ℤ)
3 climrecf.6 . 2 (𝜑𝐺𝐴)
4 climrecf.7 . 2 (𝜑𝐴 ≠ 0)
5 climrecf.1 . . . . 5 𝑘𝜑
6 nfv 1915 . . . . 5 𝑘 𝑗𝑍
75, 6nfan 1900 . . . 4 𝑘(𝜑𝑗𝑍)
8 climrecf.2 . . . . . 6 𝑘𝐺
9 nfcv 2955 . . . . . 6 𝑘𝑗
108, 9nffv 6656 . . . . 5 𝑘(𝐺𝑗)
1110nfel1 2971 . . . 4 𝑘(𝐺𝑗) ∈ (ℂ ∖ {0})
127, 11nfim 1897 . . 3 𝑘((𝜑𝑗𝑍) → (𝐺𝑗) ∈ (ℂ ∖ {0}))
13 eleq1w 2872 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1413anbi2d 631 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
15 fveq2 6646 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
1615eleq1d 2874 . . . 4 (𝑘 = 𝑗 → ((𝐺𝑘) ∈ (ℂ ∖ {0}) ↔ (𝐺𝑗) ∈ (ℂ ∖ {0})))
1714, 16imbi12d 348 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0})) ↔ ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ (ℂ ∖ {0}))))
18 climrecf.8 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
1912, 17, 18chvarfv 2240 . 2 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ (ℂ ∖ {0}))
20 climrecf.3 . . . . . 6 𝑘𝐻
2120, 9nffv 6656 . . . . 5 𝑘(𝐻𝑗)
22 nfcv 2955 . . . . . 6 𝑘1
23 nfcv 2955 . . . . . 6 𝑘 /
2422, 23, 10nfov 7166 . . . . 5 𝑘(1 / (𝐺𝑗))
2521, 24nfeq 2968 . . . 4 𝑘(𝐻𝑗) = (1 / (𝐺𝑗))
267, 25nfim 1897 . . 3 𝑘((𝜑𝑗𝑍) → (𝐻𝑗) = (1 / (𝐺𝑗)))
27 fveq2 6646 . . . . 5 (𝑘 = 𝑗 → (𝐻𝑘) = (𝐻𝑗))
2815oveq2d 7152 . . . . 5 (𝑘 = 𝑗 → (1 / (𝐺𝑘)) = (1 / (𝐺𝑗)))
2927, 28eqeq12d 2814 . . . 4 (𝑘 = 𝑗 → ((𝐻𝑘) = (1 / (𝐺𝑘)) ↔ (𝐻𝑗) = (1 / (𝐺𝑗))))
3014, 29imbi12d 348 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘))) ↔ ((𝜑𝑗𝑍) → (𝐻𝑗) = (1 / (𝐺𝑗)))))
31 climrecf.9 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
3226, 30, 31chvarfv 2240 . 2 ((𝜑𝑗𝑍) → (𝐻𝑗) = (1 / (𝐺𝑗)))
33 climrecf.10 . 2 (𝜑𝐻𝑊)
341, 2, 3, 4, 19, 32, 33climrec 42288 1 (𝜑𝐻 ⇝ (1 / 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2111  Ⅎwnfc 2936   ≠ wne 2987   ∖ cdif 3878  {csn 4525   class class class wbr 5031  ‘cfv 6325  (class class class)co 7136  ℂcc 10527  0cc0 10529  1c1 10530   / cdiv 11289  ℤcz 11972  ℤ≥cuz 12234   ⇝ cli 14836 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-sup 8893  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-n0 11889  df-z 11973  df-uz 12235  df-rp 12381  df-seq 13368  df-exp 13429  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840 This theorem is referenced by:  climdivf  42297
 Copyright terms: Public domain W3C validator