| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climrecf | Structured version Visualization version GIF version | ||
| Description: A version of climrec 45651 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| climrecf.1 | ⊢ Ⅎ𝑘𝜑 |
| climrecf.2 | ⊢ Ⅎ𝑘𝐺 |
| climrecf.3 | ⊢ Ⅎ𝑘𝐻 |
| climrecf.4 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climrecf.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climrecf.6 | ⊢ (𝜑 → 𝐺 ⇝ 𝐴) |
| climrecf.7 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| climrecf.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) |
| climrecf.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) |
| climrecf.10 | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| climrecf | ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climrecf.4 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climrecf.5 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climrecf.6 | . 2 ⊢ (𝜑 → 𝐺 ⇝ 𝐴) | |
| 4 | climrecf.7 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 5 | climrecf.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 6 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
| 7 | 5, 6 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
| 8 | climrecf.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
| 9 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
| 10 | 8, 9 | nffv 6832 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
| 11 | 10 | nfel1 2911 | . . . 4 ⊢ Ⅎ𝑘(𝐺‘𝑗) ∈ (ℂ ∖ {0}) |
| 12 | 7, 11 | nfim 1897 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ (ℂ ∖ {0})) |
| 13 | eleq1w 2814 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
| 14 | 13 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
| 15 | fveq2 6822 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
| 16 | 15 | eleq1d 2816 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐺‘𝑘) ∈ (ℂ ∖ {0}) ↔ (𝐺‘𝑗) ∈ (ℂ ∖ {0}))) |
| 17 | 14, 16 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ (ℂ ∖ {0})))) |
| 18 | climrecf.8 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) | |
| 19 | 12, 17, 18 | chvarfv 2243 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ (ℂ ∖ {0})) |
| 20 | climrecf.3 | . . . . . 6 ⊢ Ⅎ𝑘𝐻 | |
| 21 | 20, 9 | nffv 6832 | . . . . 5 ⊢ Ⅎ𝑘(𝐻‘𝑗) |
| 22 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑘1 | |
| 23 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑘 / | |
| 24 | 22, 23, 10 | nfov 7376 | . . . . 5 ⊢ Ⅎ𝑘(1 / (𝐺‘𝑗)) |
| 25 | 21, 24 | nfeq 2908 | . . . 4 ⊢ Ⅎ𝑘(𝐻‘𝑗) = (1 / (𝐺‘𝑗)) |
| 26 | 7, 25 | nfim 1897 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (1 / (𝐺‘𝑗))) |
| 27 | fveq2 6822 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐻‘𝑘) = (𝐻‘𝑗)) | |
| 28 | 15 | oveq2d 7362 | . . . . 5 ⊢ (𝑘 = 𝑗 → (1 / (𝐺‘𝑘)) = (1 / (𝐺‘𝑗))) |
| 29 | 27, 28 | eqeq12d 2747 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐻‘𝑘) = (1 / (𝐺‘𝑘)) ↔ (𝐻‘𝑗) = (1 / (𝐺‘𝑗)))) |
| 30 | 14, 29 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (1 / (𝐺‘𝑗))))) |
| 31 | climrecf.9 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) | |
| 32 | 26, 30, 31 | chvarfv 2243 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (1 / (𝐺‘𝑗))) |
| 33 | climrecf.10 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
| 34 | 1, 2, 3, 4, 19, 32, 33 | climrec 45651 | 1 ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 ≠ wne 2928 ∖ cdif 3894 {csn 4573 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 / cdiv 11774 ℤcz 12468 ℤ≥cuz 12732 ⇝ cli 15391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 |
| This theorem is referenced by: climdivf 45660 |
| Copyright terms: Public domain | W3C validator |