Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwnonrepclwwnon Structured version   Visualization version   GIF version

Theorem clwwnonrepclwwnon 28126
 Description: If the initial vertex of a closed walk occurs another time in the walk, the walk starts with a closed walk on this vertex. See also the remarks in clwwnrepclwwn 28125. (Contributed by AV, 24-Apr-2022.) (Revised by AV, 10-May-2022.) (Revised by AV, 30-Oct-2022.)
Assertion
Ref Expression
clwwnonrepclwwnon ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))

Proof of Theorem clwwnonrepclwwnon
StepHypRef Expression
1 simp1 1133 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → 𝑁 ∈ (ℤ‘3))
2 isclwwlknon 27872 . . . . 5 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋))
32simplbi 501 . . . 4 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → 𝑊 ∈ (𝑁 ClWWalksN 𝐺))
433ad2ant2 1131 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → 𝑊 ∈ (𝑁 ClWWalksN 𝐺))
5 simpr 488 . . . . . . . 8 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑊‘0) = 𝑋)
65eqcomd 2830 . . . . . . 7 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → 𝑋 = (𝑊‘0))
72, 6sylbi 220 . . . . . 6 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → 𝑋 = (𝑊‘0))
87eqeq2d 2835 . . . . 5 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → ((𝑊‘(𝑁 − 2)) = 𝑋 ↔ (𝑊‘(𝑁 − 2)) = (𝑊‘0)))
98biimpa 480 . . . 4 ((𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊‘(𝑁 − 2)) = (𝑊‘0))
1093adant1 1127 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊‘(𝑁 − 2)) = (𝑊‘0))
11 clwwnrepclwwn 28125 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺))
121, 4, 10, 11syl3anc 1368 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺))
13 2clwwlklem 28124 . . . . . 6 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑁 ∈ (ℤ‘3)) → ((𝑊 prefix (𝑁 − 2))‘0) = (𝑊‘0))
143, 13sylan 583 . . . . 5 ((𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ 𝑁 ∈ (ℤ‘3)) → ((𝑊 prefix (𝑁 − 2))‘0) = (𝑊‘0))
1514ancoms 462 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → ((𝑊 prefix (𝑁 − 2))‘0) = (𝑊‘0))
16153adant3 1129 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → ((𝑊 prefix (𝑁 − 2))‘0) = (𝑊‘0))
172simprbi 500 . . . 4 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → (𝑊‘0) = 𝑋)
18173ad2ant2 1131 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊‘0) = 𝑋)
1916, 18eqtrd 2859 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → ((𝑊 prefix (𝑁 − 2))‘0) = 𝑋)
20 isclwwlknon 27872 . 2 ((𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 − 2))‘0) = 𝑋))
2112, 19, 20sylanbrc 586 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ‘cfv 6343  (class class class)co 7145  0cc0 10529   − cmin 10862  2c2 11685  3c3 11686  ℤ≥cuz 12236   prefix cpfx 14028   ClWWalksN cclwwlkn 27805  ClWWalksNOncclwwlknon 27868 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-map 8398  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11693  df-3 11694  df-n0 11891  df-xnn0 11961  df-z 11975  df-uz 12237  df-fz 12891  df-fzo 13034  df-hash 13692  df-word 13863  df-lsw 13911  df-substr 13999  df-pfx 14029  df-wwlks 27612  df-wwlksn 27613  df-clwwlk 27763  df-clwwlkn 27806  df-clwwlknon 27869 This theorem is referenced by:  2clwwlk2clwwlk  28131
 Copyright terms: Public domain W3C validator