![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwnonrepclwwnon | Structured version Visualization version GIF version |
Description: If the initial vertex of a closed walk occurs another time in the walk, the walk starts with a closed walk on this vertex. See also the remarks in clwwnrepclwwn 30373. (Contributed by AV, 24-Apr-2022.) (Revised by AV, 10-May-2022.) (Revised by AV, 30-Oct-2022.) |
Ref | Expression |
---|---|
clwwnonrepclwwnon | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → 𝑁 ∈ (ℤ≥‘3)) | |
2 | isclwwlknon 30120 | . . . . 5 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) | |
3 | 2 | simplbi 497 | . . . 4 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) |
4 | 3 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) |
5 | simpr 484 | . . . . . . . 8 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑊‘0) = 𝑋) | |
6 | 5 | eqcomd 2741 | . . . . . . 7 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → 𝑋 = (𝑊‘0)) |
7 | 2, 6 | sylbi 217 | . . . . . 6 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → 𝑋 = (𝑊‘0)) |
8 | 7 | eqeq2d 2746 | . . . . 5 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → ((𝑊‘(𝑁 − 2)) = 𝑋 ↔ (𝑊‘(𝑁 − 2)) = (𝑊‘0))) |
9 | 8 | biimpa 476 | . . . 4 ⊢ ((𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊‘(𝑁 − 2)) = (𝑊‘0)) |
10 | 9 | 3adant1 1129 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊‘(𝑁 − 2)) = (𝑊‘0)) |
11 | clwwnrepclwwn 30373 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺)) | |
12 | 1, 4, 10, 11 | syl3anc 1370 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺)) |
13 | 2clwwlklem 30372 | . . . . . 6 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑊 prefix (𝑁 − 2))‘0) = (𝑊‘0)) | |
14 | 3, 13 | sylan 580 | . . . . 5 ⊢ ((𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑊 prefix (𝑁 − 2))‘0) = (𝑊‘0)) |
15 | 14 | ancoms 458 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → ((𝑊 prefix (𝑁 − 2))‘0) = (𝑊‘0)) |
16 | 15 | 3adant3 1131 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → ((𝑊 prefix (𝑁 − 2))‘0) = (𝑊‘0)) |
17 | 2 | simprbi 496 | . . . 4 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → (𝑊‘0) = 𝑋) |
18 | 17 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊‘0) = 𝑋) |
19 | 16, 18 | eqtrd 2775 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → ((𝑊 prefix (𝑁 − 2))‘0) = 𝑋) |
20 | isclwwlknon 30120 | . 2 ⊢ ((𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 − 2))‘0) = 𝑋)) | |
21 | 12, 19, 20 | sylanbrc 583 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 0cc0 11153 − cmin 11490 2c2 12319 3c3 12320 ℤ≥cuz 12876 prefix cpfx 14705 ClWWalksN cclwwlkn 30053 ClWWalksNOncclwwlknon 30116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-lsw 14598 df-substr 14676 df-pfx 14706 df-wwlks 29860 df-wwlksn 29861 df-clwwlk 30011 df-clwwlkn 30054 df-clwwlknon 30117 |
This theorem is referenced by: 2clwwlk2clwwlk 30379 |
Copyright terms: Public domain | W3C validator |