| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwnonrepclwwnon | Structured version Visualization version GIF version | ||
| Description: If the initial vertex of a closed walk occurs another time in the walk, the walk starts with a closed walk on this vertex. See also the remarks in clwwnrepclwwn 30324. (Contributed by AV, 24-Apr-2022.) (Revised by AV, 10-May-2022.) (Revised by AV, 30-Oct-2022.) |
| Ref | Expression |
|---|---|
| clwwnonrepclwwnon | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → 𝑁 ∈ (ℤ≥‘3)) | |
| 2 | isclwwlknon 30071 | . . . . 5 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) | |
| 3 | 2 | simplbi 497 | . . . 4 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) |
| 4 | 3 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) |
| 5 | simpr 484 | . . . . . . . 8 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑊‘0) = 𝑋) | |
| 6 | 5 | eqcomd 2737 | . . . . . . 7 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → 𝑋 = (𝑊‘0)) |
| 7 | 2, 6 | sylbi 217 | . . . . . 6 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → 𝑋 = (𝑊‘0)) |
| 8 | 7 | eqeq2d 2742 | . . . . 5 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → ((𝑊‘(𝑁 − 2)) = 𝑋 ↔ (𝑊‘(𝑁 − 2)) = (𝑊‘0))) |
| 9 | 8 | biimpa 476 | . . . 4 ⊢ ((𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊‘(𝑁 − 2)) = (𝑊‘0)) |
| 10 | 9 | 3adant1 1130 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊‘(𝑁 − 2)) = (𝑊‘0)) |
| 11 | clwwnrepclwwn 30324 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺)) | |
| 12 | 1, 4, 10, 11 | syl3anc 1373 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺)) |
| 13 | 2clwwlklem 30323 | . . . . . 6 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑊 prefix (𝑁 − 2))‘0) = (𝑊‘0)) | |
| 14 | 3, 13 | sylan 580 | . . . . 5 ⊢ ((𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑊 prefix (𝑁 − 2))‘0) = (𝑊‘0)) |
| 15 | 14 | ancoms 458 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → ((𝑊 prefix (𝑁 − 2))‘0) = (𝑊‘0)) |
| 16 | 15 | 3adant3 1132 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → ((𝑊 prefix (𝑁 − 2))‘0) = (𝑊‘0)) |
| 17 | 2 | simprbi 496 | . . . 4 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → (𝑊‘0) = 𝑋) |
| 18 | 17 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊‘0) = 𝑋) |
| 19 | 16, 18 | eqtrd 2766 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → ((𝑊 prefix (𝑁 − 2))‘0) = 𝑋) |
| 20 | isclwwlknon 30071 | . 2 ⊢ ((𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 − 2))‘0) = 𝑋)) | |
| 21 | 12, 19, 20 | sylanbrc 583 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 0cc0 11006 − cmin 11344 2c2 12180 3c3 12181 ℤ≥cuz 12732 prefix cpfx 14578 ClWWalksN cclwwlkn 30004 ClWWalksNOncclwwlknon 30067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-lsw 14470 df-substr 14549 df-pfx 14579 df-wwlks 29808 df-wwlksn 29809 df-clwwlk 29962 df-clwwlkn 30005 df-clwwlknon 30068 |
| This theorem is referenced by: 2clwwlk2clwwlk 30330 |
| Copyright terms: Public domain | W3C validator |