![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem4 | Structured version Visualization version GIF version |
Description: If the product of two coprime factors is a perfect square, the factors are perfect squares. (Contributed by SN, 22-Aug-2024.) |
Ref | Expression |
---|---|
flt4lem4.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
flt4lem4.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
flt4lem4.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
flt4lem4.1 | ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
flt4lem4.2 | ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐶↑2)) |
Ref | Expression |
---|---|
flt4lem4 | ⊢ (𝜑 → (𝐴 = ((𝐴 gcd 𝐶)↑2) ∧ 𝐵 = ((𝐵 gcd 𝐶)↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem4.2 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐶↑2)) | |
2 | 1 | eqcomd 2746 | . . 3 ⊢ (𝜑 → (𝐶↑2) = (𝐴 · 𝐵)) |
3 | flt4lem4.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
4 | 3 | nnnn0d 12615 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
5 | flt4lem4.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
6 | 5 | nnnn0d 12615 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℕ0) |
7 | 6 | nn0zd 12667 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
8 | flt4lem4.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
9 | 8 | nnnn0d 12615 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℕ0) |
10 | flt4lem4.1 | . . . . . 6 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | |
11 | 10 | oveq1d 7465 | . . . . 5 ⊢ (𝜑 → ((𝐴 gcd 𝐵) gcd 𝐶) = (1 gcd 𝐶)) |
12 | 9 | nn0zd 12667 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℤ) |
13 | 1gcd 16582 | . . . . . 6 ⊢ (𝐶 ∈ ℤ → (1 gcd 𝐶) = 1) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (1 gcd 𝐶) = 1) |
15 | 11, 14 | eqtrd 2780 | . . . 4 ⊢ (𝜑 → ((𝐴 gcd 𝐵) gcd 𝐶) = 1) |
16 | coprimeprodsq 16857 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2))) | |
17 | 4, 7, 9, 15, 16 | syl31anc 1373 | . . 3 ⊢ (𝜑 → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2))) |
18 | 2, 17 | mpd 15 | . 2 ⊢ (𝜑 → 𝐴 = ((𝐴 gcd 𝐶)↑2)) |
19 | 3 | nnzd 12668 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
20 | coprimeprodsq2 16858 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2))) | |
21 | 19, 6, 9, 15, 20 | syl31anc 1373 | . . 3 ⊢ (𝜑 → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2))) |
22 | 2, 21 | mpd 15 | . 2 ⊢ (𝜑 → 𝐵 = ((𝐵 gcd 𝐶)↑2)) |
23 | 18, 22 | jca 511 | 1 ⊢ (𝜑 → (𝐴 = ((𝐴 gcd 𝐶)↑2) ∧ 𝐵 = ((𝐵 gcd 𝐶)↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7450 1c1 11187 · cmul 11191 ℕcn 12295 2c2 12350 ℕ0cn0 12555 ℤcz 12641 ↑cexp 14114 gcd cgcd 16542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-sup 9513 df-inf 9514 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-2 12358 df-3 12359 df-n0 12556 df-z 12642 df-uz 12906 df-rp 13060 df-fl 13845 df-mod 13923 df-seq 14055 df-exp 14115 df-cj 15150 df-re 15151 df-im 15152 df-sqrt 15286 df-abs 15287 df-dvds 16305 df-gcd 16543 |
This theorem is referenced by: flt4lem5f 42614 |
Copyright terms: Public domain | W3C validator |