![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem4 | Structured version Visualization version GIF version |
Description: If the product of two coprime factors is a perfect square, the factors are perfect squares. (Contributed by SN, 22-Aug-2024.) |
Ref | Expression |
---|---|
flt4lem4.a | โข (๐ โ ๐ด โ โ) |
flt4lem4.b | โข (๐ โ ๐ต โ โ) |
flt4lem4.c | โข (๐ โ ๐ถ โ โ) |
flt4lem4.1 | โข (๐ โ (๐ด gcd ๐ต) = 1) |
flt4lem4.2 | โข (๐ โ (๐ด ยท ๐ต) = (๐ถโ2)) |
Ref | Expression |
---|---|
flt4lem4 | โข (๐ โ (๐ด = ((๐ด gcd ๐ถ)โ2) โง ๐ต = ((๐ต gcd ๐ถ)โ2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem4.2 | . . . 4 โข (๐ โ (๐ด ยท ๐ต) = (๐ถโ2)) | |
2 | 1 | eqcomd 2730 | . . 3 โข (๐ โ (๐ถโ2) = (๐ด ยท ๐ต)) |
3 | flt4lem4.a | . . . . 5 โข (๐ โ ๐ด โ โ) | |
4 | 3 | nnnn0d 12531 | . . . 4 โข (๐ โ ๐ด โ โ0) |
5 | flt4lem4.b | . . . . . 6 โข (๐ โ ๐ต โ โ) | |
6 | 5 | nnnn0d 12531 | . . . . 5 โข (๐ โ ๐ต โ โ0) |
7 | 6 | nn0zd 12583 | . . . 4 โข (๐ โ ๐ต โ โค) |
8 | flt4lem4.c | . . . . 5 โข (๐ โ ๐ถ โ โ) | |
9 | 8 | nnnn0d 12531 | . . . 4 โข (๐ โ ๐ถ โ โ0) |
10 | flt4lem4.1 | . . . . . 6 โข (๐ โ (๐ด gcd ๐ต) = 1) | |
11 | 10 | oveq1d 7417 | . . . . 5 โข (๐ โ ((๐ด gcd ๐ต) gcd ๐ถ) = (1 gcd ๐ถ)) |
12 | 9 | nn0zd 12583 | . . . . . 6 โข (๐ โ ๐ถ โ โค) |
13 | 1gcd 16478 | . . . . . 6 โข (๐ถ โ โค โ (1 gcd ๐ถ) = 1) | |
14 | 12, 13 | syl 17 | . . . . 5 โข (๐ โ (1 gcd ๐ถ) = 1) |
15 | 11, 14 | eqtrd 2764 | . . . 4 โข (๐ โ ((๐ด gcd ๐ต) gcd ๐ถ) = 1) |
16 | coprimeprodsq 16746 | . . . 4 โข (((๐ด โ โ0 โง ๐ต โ โค โง ๐ถ โ โ0) โง ((๐ด gcd ๐ต) gcd ๐ถ) = 1) โ ((๐ถโ2) = (๐ด ยท ๐ต) โ ๐ด = ((๐ด gcd ๐ถ)โ2))) | |
17 | 4, 7, 9, 15, 16 | syl31anc 1370 | . . 3 โข (๐ โ ((๐ถโ2) = (๐ด ยท ๐ต) โ ๐ด = ((๐ด gcd ๐ถ)โ2))) |
18 | 2, 17 | mpd 15 | . 2 โข (๐ โ ๐ด = ((๐ด gcd ๐ถ)โ2)) |
19 | 3 | nnzd 12584 | . . . 4 โข (๐ โ ๐ด โ โค) |
20 | coprimeprodsq2 16747 | . . . 4 โข (((๐ด โ โค โง ๐ต โ โ0 โง ๐ถ โ โ0) โง ((๐ด gcd ๐ต) gcd ๐ถ) = 1) โ ((๐ถโ2) = (๐ด ยท ๐ต) โ ๐ต = ((๐ต gcd ๐ถ)โ2))) | |
21 | 19, 6, 9, 15, 20 | syl31anc 1370 | . . 3 โข (๐ โ ((๐ถโ2) = (๐ด ยท ๐ต) โ ๐ต = ((๐ต gcd ๐ถ)โ2))) |
22 | 2, 21 | mpd 15 | . 2 โข (๐ โ ๐ต = ((๐ต gcd ๐ถ)โ2)) |
23 | 18, 22 | jca 511 | 1 โข (๐ โ (๐ด = ((๐ด gcd ๐ถ)โ2) โง ๐ต = ((๐ต gcd ๐ถ)โ2))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 = wceq 1533 โ wcel 2098 (class class class)co 7402 1c1 11108 ยท cmul 11112 โcn 12211 2c2 12266 โ0cn0 12471 โคcz 12557 โcexp 14028 gcd cgcd 16438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-inf 9435 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12976 df-fl 13758 df-mod 13836 df-seq 13968 df-exp 14029 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-dvds 16201 df-gcd 16439 |
This theorem is referenced by: flt4lem5f 41949 |
Copyright terms: Public domain | W3C validator |