| Mathbox for Steven Nguyen | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem4 | Structured version Visualization version GIF version | ||
| Description: If the product of two coprime factors is a perfect square, the factors are perfect squares. (Contributed by SN, 22-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| flt4lem4.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) | 
| flt4lem4.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) | 
| flt4lem4.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) | 
| flt4lem4.1 | ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | 
| flt4lem4.2 | ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐶↑2)) | 
| Ref | Expression | 
|---|---|
| flt4lem4 | ⊢ (𝜑 → (𝐴 = ((𝐴 gcd 𝐶)↑2) ∧ 𝐵 = ((𝐵 gcd 𝐶)↑2))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | flt4lem4.2 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐶↑2)) | |
| 2 | 1 | eqcomd 2740 | . . 3 ⊢ (𝜑 → (𝐶↑2) = (𝐴 · 𝐵)) | 
| 3 | flt4lem4.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 4 | 3 | nnnn0d 12569 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | 
| 5 | flt4lem4.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 6 | 5 | nnnn0d 12569 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℕ0) | 
| 7 | 6 | nn0zd 12621 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℤ) | 
| 8 | flt4lem4.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
| 9 | 8 | nnnn0d 12569 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℕ0) | 
| 10 | flt4lem4.1 | . . . . . 6 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | |
| 11 | 10 | oveq1d 7427 | . . . . 5 ⊢ (𝜑 → ((𝐴 gcd 𝐵) gcd 𝐶) = (1 gcd 𝐶)) | 
| 12 | 9 | nn0zd 12621 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℤ) | 
| 13 | 1gcd 16551 | . . . . . 6 ⊢ (𝐶 ∈ ℤ → (1 gcd 𝐶) = 1) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (1 gcd 𝐶) = 1) | 
| 15 | 11, 14 | eqtrd 2769 | . . . 4 ⊢ (𝜑 → ((𝐴 gcd 𝐵) gcd 𝐶) = 1) | 
| 16 | coprimeprodsq 16827 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2))) | |
| 17 | 4, 7, 9, 15, 16 | syl31anc 1374 | . . 3 ⊢ (𝜑 → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2))) | 
| 18 | 2, 17 | mpd 15 | . 2 ⊢ (𝜑 → 𝐴 = ((𝐴 gcd 𝐶)↑2)) | 
| 19 | 3 | nnzd 12622 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | 
| 20 | coprimeprodsq2 16828 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2))) | |
| 21 | 19, 6, 9, 15, 20 | syl31anc 1374 | . . 3 ⊢ (𝜑 → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2))) | 
| 22 | 2, 21 | mpd 15 | . 2 ⊢ (𝜑 → 𝐵 = ((𝐵 gcd 𝐶)↑2)) | 
| 23 | 18, 22 | jca 511 | 1 ⊢ (𝜑 → (𝐴 = ((𝐴 gcd 𝐶)↑2) ∧ 𝐵 = ((𝐵 gcd 𝐶)↑2))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 (class class class)co 7412 1c1 11137 · cmul 11141 ℕcn 12247 2c2 12302 ℕ0cn0 12508 ℤcz 12595 ↑cexp 14083 gcd cgcd 16512 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-3 12311 df-n0 12509 df-z 12596 df-uz 12860 df-rp 13016 df-fl 13813 df-mod 13891 df-seq 14024 df-exp 14084 df-cj 15119 df-re 15120 df-im 15121 df-sqrt 15255 df-abs 15256 df-dvds 16272 df-gcd 16513 | 
| This theorem is referenced by: flt4lem5f 42605 | 
| Copyright terms: Public domain | W3C validator |