Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem4 | Structured version Visualization version GIF version |
Description: If the product of two coprime factors is a perfect square, the factors are perfect squares. (Contributed by SN, 22-Aug-2024.) |
Ref | Expression |
---|---|
flt4lem4.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
flt4lem4.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
flt4lem4.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
flt4lem4.1 | ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
flt4lem4.2 | ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐶↑2)) |
Ref | Expression |
---|---|
flt4lem4 | ⊢ (𝜑 → (𝐴 = ((𝐴 gcd 𝐶)↑2) ∧ 𝐵 = ((𝐵 gcd 𝐶)↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem4.2 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐶↑2)) | |
2 | 1 | eqcomd 2744 | . . 3 ⊢ (𝜑 → (𝐶↑2) = (𝐴 · 𝐵)) |
3 | flt4lem4.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
4 | 3 | nnnn0d 12036 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
5 | flt4lem4.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
6 | 5 | nnnn0d 12036 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℕ0) |
7 | 6 | nn0zd 12166 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
8 | flt4lem4.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
9 | 8 | nnnn0d 12036 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℕ0) |
10 | flt4lem4.1 | . . . . . 6 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | |
11 | 10 | oveq1d 7185 | . . . . 5 ⊢ (𝜑 → ((𝐴 gcd 𝐵) gcd 𝐶) = (1 gcd 𝐶)) |
12 | 9 | nn0zd 12166 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℤ) |
13 | 1gcd 15977 | . . . . . 6 ⊢ (𝐶 ∈ ℤ → (1 gcd 𝐶) = 1) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (1 gcd 𝐶) = 1) |
15 | 11, 14 | eqtrd 2773 | . . . 4 ⊢ (𝜑 → ((𝐴 gcd 𝐵) gcd 𝐶) = 1) |
16 | coprimeprodsq 16245 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2))) | |
17 | 4, 7, 9, 15, 16 | syl31anc 1374 | . . 3 ⊢ (𝜑 → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2))) |
18 | 2, 17 | mpd 15 | . 2 ⊢ (𝜑 → 𝐴 = ((𝐴 gcd 𝐶)↑2)) |
19 | 3 | nnzd 12167 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
20 | coprimeprodsq2 16246 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2))) | |
21 | 19, 6, 9, 15, 20 | syl31anc 1374 | . . 3 ⊢ (𝜑 → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2))) |
22 | 2, 21 | mpd 15 | . 2 ⊢ (𝜑 → 𝐵 = ((𝐵 gcd 𝐶)↑2)) |
23 | 18, 22 | jca 515 | 1 ⊢ (𝜑 → (𝐴 = ((𝐴 gcd 𝐶)↑2) ∧ 𝐵 = ((𝐵 gcd 𝐶)↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 (class class class)co 7170 1c1 10616 · cmul 10620 ℕcn 11716 2c2 11771 ℕ0cn0 11976 ℤcz 12062 ↑cexp 13521 gcd cgcd 15937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-sup 8979 df-inf 8980 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-n0 11977 df-z 12063 df-uz 12325 df-rp 12473 df-fl 13253 df-mod 13329 df-seq 13461 df-exp 13522 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-dvds 15700 df-gcd 15938 |
This theorem is referenced by: flt4lem5f 40066 |
Copyright terms: Public domain | W3C validator |