MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygablOLD Structured version   Visualization version   GIF version

Theorem cygablOLD 19492
Description: Obsolete proof of cygabl 19491 as of 20-Jan-2024. A cyclic group is abelian. (Contributed by Mario Carneiro, 21-Apr-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
cygablOLD (𝐺 ∈ CycGrp → 𝐺 ∈ Abel)

Proof of Theorem cygablOLD
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2738 . . 3 (.g𝐺) = (.g𝐺)
31, 2iscyg3 19486 . 2 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)))
4 eqidd 2739 . . . 4 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) → (Base‘𝐺) = (Base‘𝐺))
5 eqidd 2739 . . . 4 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) → (+g𝐺) = (+g𝐺))
6 simpll 764 . . . 4 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) → 𝐺 ∈ Grp)
7 eqeq1 2742 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝑦 = (𝑛(.g𝐺)𝑥) ↔ 𝑎 = (𝑛(.g𝐺)𝑥)))
87rexbidv 3226 . . . . . . . . 9 (𝑦 = 𝑎 → (∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥) ↔ ∃𝑛 ∈ ℤ 𝑎 = (𝑛(.g𝐺)𝑥)))
9 oveq1 7282 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑛(.g𝐺)𝑥) = (𝑚(.g𝐺)𝑥))
109eqeq2d 2749 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑎 = (𝑛(.g𝐺)𝑥) ↔ 𝑎 = (𝑚(.g𝐺)𝑥)))
1110cbvrexv 3389 . . . . . . . . 9 (∃𝑛 ∈ ℤ 𝑎 = (𝑛(.g𝐺)𝑥) ↔ ∃𝑚 ∈ ℤ 𝑎 = (𝑚(.g𝐺)𝑥))
128, 11bitrdi 287 . . . . . . . 8 (𝑦 = 𝑎 → (∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥) ↔ ∃𝑚 ∈ ℤ 𝑎 = (𝑚(.g𝐺)𝑥)))
1312rspccv 3558 . . . . . . 7 (∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥) → (𝑎 ∈ (Base‘𝐺) → ∃𝑚 ∈ ℤ 𝑎 = (𝑚(.g𝐺)𝑥)))
1413adantl 482 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) → (𝑎 ∈ (Base‘𝐺) → ∃𝑚 ∈ ℤ 𝑎 = (𝑚(.g𝐺)𝑥)))
15 eqeq1 2742 . . . . . . . . 9 (𝑦 = 𝑏 → (𝑦 = (𝑛(.g𝐺)𝑥) ↔ 𝑏 = (𝑛(.g𝐺)𝑥)))
1615rexbidv 3226 . . . . . . . 8 (𝑦 = 𝑏 → (∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥) ↔ ∃𝑛 ∈ ℤ 𝑏 = (𝑛(.g𝐺)𝑥)))
1716rspccv 3558 . . . . . . 7 (∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥) → (𝑏 ∈ (Base‘𝐺) → ∃𝑛 ∈ ℤ 𝑏 = (𝑛(.g𝐺)𝑥)))
1817adantl 482 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) → (𝑏 ∈ (Base‘𝐺) → ∃𝑛 ∈ ℤ 𝑏 = (𝑛(.g𝐺)𝑥)))
19 reeanv 3294 . . . . . . . 8 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑎 = (𝑚(.g𝐺)𝑥) ∧ 𝑏 = (𝑛(.g𝐺)𝑥)) ↔ (∃𝑚 ∈ ℤ 𝑎 = (𝑚(.g𝐺)𝑥) ∧ ∃𝑛 ∈ ℤ 𝑏 = (𝑛(.g𝐺)𝑥)))
20 zcn 12324 . . . . . . . . . . . . . 14 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
2120ad2antrl 725 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → 𝑚 ∈ ℂ)
22 zcn 12324 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
2322ad2antll 726 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → 𝑛 ∈ ℂ)
2421, 23addcomd 11177 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝑚 + 𝑛) = (𝑛 + 𝑚))
2524oveq1d 7290 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑚 + 𝑛)(.g𝐺)𝑥) = ((𝑛 + 𝑚)(.g𝐺)𝑥))
26 simpll 764 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → 𝐺 ∈ Grp)
27 simprl 768 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → 𝑚 ∈ ℤ)
28 simprr 770 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → 𝑛 ∈ ℤ)
29 simplr 766 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → 𝑥 ∈ (Base‘𝐺))
30 eqid 2738 . . . . . . . . . . . . 13 (+g𝐺) = (+g𝐺)
311, 2, 30mulgdir 18735 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ (Base‘𝐺))) → ((𝑚 + 𝑛)(.g𝐺)𝑥) = ((𝑚(.g𝐺)𝑥)(+g𝐺)(𝑛(.g𝐺)𝑥)))
3226, 27, 28, 29, 31syl13anc 1371 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑚 + 𝑛)(.g𝐺)𝑥) = ((𝑚(.g𝐺)𝑥)(+g𝐺)(𝑛(.g𝐺)𝑥)))
331, 2, 30mulgdir 18735 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑥 ∈ (Base‘𝐺))) → ((𝑛 + 𝑚)(.g𝐺)𝑥) = ((𝑛(.g𝐺)𝑥)(+g𝐺)(𝑚(.g𝐺)𝑥)))
3426, 28, 27, 29, 33syl13anc 1371 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑛 + 𝑚)(.g𝐺)𝑥) = ((𝑛(.g𝐺)𝑥)(+g𝐺)(𝑚(.g𝐺)𝑥)))
3525, 32, 343eqtr3d 2786 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑚(.g𝐺)𝑥)(+g𝐺)(𝑛(.g𝐺)𝑥)) = ((𝑛(.g𝐺)𝑥)(+g𝐺)(𝑚(.g𝐺)𝑥)))
36 oveq12 7284 . . . . . . . . . . 11 ((𝑎 = (𝑚(.g𝐺)𝑥) ∧ 𝑏 = (𝑛(.g𝐺)𝑥)) → (𝑎(+g𝐺)𝑏) = ((𝑚(.g𝐺)𝑥)(+g𝐺)(𝑛(.g𝐺)𝑥)))
37 oveq12 7284 . . . . . . . . . . . 12 ((𝑏 = (𝑛(.g𝐺)𝑥) ∧ 𝑎 = (𝑚(.g𝐺)𝑥)) → (𝑏(+g𝐺)𝑎) = ((𝑛(.g𝐺)𝑥)(+g𝐺)(𝑚(.g𝐺)𝑥)))
3837ancoms 459 . . . . . . . . . . 11 ((𝑎 = (𝑚(.g𝐺)𝑥) ∧ 𝑏 = (𝑛(.g𝐺)𝑥)) → (𝑏(+g𝐺)𝑎) = ((𝑛(.g𝐺)𝑥)(+g𝐺)(𝑚(.g𝐺)𝑥)))
3936, 38eqeq12d 2754 . . . . . . . . . 10 ((𝑎 = (𝑚(.g𝐺)𝑥) ∧ 𝑏 = (𝑛(.g𝐺)𝑥)) → ((𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎) ↔ ((𝑚(.g𝐺)𝑥)(+g𝐺)(𝑛(.g𝐺)𝑥)) = ((𝑛(.g𝐺)𝑥)(+g𝐺)(𝑚(.g𝐺)𝑥))))
4035, 39syl5ibrcom 246 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑎 = (𝑚(.g𝐺)𝑥) ∧ 𝑏 = (𝑛(.g𝐺)𝑥)) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎)))
4140rexlimdvva 3223 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑎 = (𝑚(.g𝐺)𝑥) ∧ 𝑏 = (𝑛(.g𝐺)𝑥)) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎)))
4219, 41syl5bir 242 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ((∃𝑚 ∈ ℤ 𝑎 = (𝑚(.g𝐺)𝑥) ∧ ∃𝑛 ∈ ℤ 𝑏 = (𝑛(.g𝐺)𝑥)) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎)))
4342adantr 481 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) → ((∃𝑚 ∈ ℤ 𝑎 = (𝑚(.g𝐺)𝑥) ∧ ∃𝑛 ∈ ℤ 𝑏 = (𝑛(.g𝐺)𝑥)) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎)))
4414, 18, 43syl2and 608 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) → ((𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎)))
45443impib 1115 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
464, 5, 6, 45isabld 19400 . . 3 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) → 𝐺 ∈ Abel)
4746r19.29an 3217 . 2 ((𝐺 ∈ Grp ∧ ∃𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) → 𝐺 ∈ Abel)
483, 47sylbi 216 1 (𝐺 ∈ CycGrp → 𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cfv 6433  (class class class)co 7275  cc 10869   + caddc 10874  cz 12319  Basecbs 16912  +gcplusg 16962  Grpcgrp 18577  .gcmg 18700  Abelcabl 19387  CycGrpccyg 19477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-mulg 18701  df-cmn 19388  df-abl 19389  df-cyg 19478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator