Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl5bir | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
syl5bir.1 | ⊢ (𝜓 ↔ 𝜑) |
syl5bir.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
syl5bir | ⊢ (𝜒 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5bir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | biimpri 231 | . 2 ⊢ (𝜑 → 𝜓) |
3 | syl5bir.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
4 | 2, 3 | syl5 34 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
Copyright terms: Public domain | W3C validator |