| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleclclwwlknlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for eleclclwwlkn 30062. (Contributed by Alexander van der Vekens, 11-May-2018.) (Revised by AV, 30-Apr-2021.) |
| Ref | Expression |
|---|---|
| erclwwlkn1.w | ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
| Ref | Expression |
|---|---|
| eleclclwwlknlem1 | ⊢ ((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) → ((𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . . . . 8 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | 1 | clwwlknbp 30021 | . . . . . . 7 ⊢ (𝑌 ∈ (𝑁 ClWWalksN 𝐺) → (𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁)) |
| 3 | erclwwlkn1.w | . . . . . . 7 ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) | |
| 4 | 2, 3 | eleq2s 2853 | . . . . . 6 ⊢ (𝑌 ∈ 𝑊 → (𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁)) |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊) → (𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁)) |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) → (𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁)) |
| 7 | 6 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → (𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁)) |
| 8 | simpl 482 | . . . . 5 ⊢ ((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) → 𝐾 ∈ (0...𝑁)) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → 𝐾 ∈ (0...𝑁)) |
| 10 | simpl 482 | . . . . 5 ⊢ ((𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → 𝑋 = (𝑌 cyclShift 𝐾)) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ (((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → 𝑋 = (𝑌 cyclShift 𝐾)) |
| 12 | simprr 772 | . . . 4 ⊢ (((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) | |
| 13 | 9, 11, 12 | 3jca 1128 | . . 3 ⊢ (((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → (𝐾 ∈ (0...𝑁) ∧ 𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) |
| 14 | 2cshwcshw 14849 | . . 3 ⊢ ((𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁) → ((𝐾 ∈ (0...𝑁) ∧ 𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))) | |
| 15 | 7, 13, 14 | sylc 65 | . 2 ⊢ (((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)) |
| 16 | 15 | ex 412 | 1 ⊢ ((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) → ((𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ‘cfv 6536 (class class class)co 7410 0cc0 11134 ...cfz 13529 ♯chash 14353 Word cword 14536 cyclShift ccsh 14811 Vtxcvtx 28980 ClWWalksN cclwwlkn 30010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-hash 14354 df-word 14537 df-concat 14594 df-substr 14664 df-pfx 14694 df-csh 14812 df-clwwlk 29968 df-clwwlkn 30011 |
| This theorem is referenced by: eleclclwwlknlem2 30047 |
| Copyright terms: Public domain | W3C validator |