| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleclclwwlknlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for eleclclwwlkn 30055. (Contributed by Alexander van der Vekens, 11-May-2018.) (Revised by AV, 30-Apr-2021.) |
| Ref | Expression |
|---|---|
| erclwwlkn1.w | ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
| Ref | Expression |
|---|---|
| eleclclwwlknlem1 | ⊢ ((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) → ((𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . . . 8 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | 1 | clwwlknbp 30014 | . . . . . . 7 ⊢ (𝑌 ∈ (𝑁 ClWWalksN 𝐺) → (𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁)) |
| 3 | erclwwlkn1.w | . . . . . . 7 ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) | |
| 4 | 2, 3 | eleq2s 2846 | . . . . . 6 ⊢ (𝑌 ∈ 𝑊 → (𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁)) |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊) → (𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁)) |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) → (𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁)) |
| 7 | 6 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → (𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁)) |
| 8 | simpl 482 | . . . . 5 ⊢ ((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) → 𝐾 ∈ (0...𝑁)) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → 𝐾 ∈ (0...𝑁)) |
| 10 | simpl 482 | . . . . 5 ⊢ ((𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → 𝑋 = (𝑌 cyclShift 𝐾)) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ (((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → 𝑋 = (𝑌 cyclShift 𝐾)) |
| 12 | simprr 772 | . . . 4 ⊢ (((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) | |
| 13 | 9, 11, 12 | 3jca 1128 | . . 3 ⊢ (((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → (𝐾 ∈ (0...𝑁) ∧ 𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) |
| 14 | 2cshwcshw 14767 | . . 3 ⊢ ((𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁) → ((𝐾 ∈ (0...𝑁) ∧ 𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))) | |
| 15 | 7, 13, 14 | sylc 65 | . 2 ⊢ (((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)) |
| 16 | 15 | ex 412 | 1 ⊢ ((𝐾 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊)) → ((𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ‘cfv 6499 (class class class)co 7369 0cc0 11044 ...cfz 13444 ♯chash 14271 Word cword 14454 cyclShift ccsh 14729 Vtxcvtx 28976 ClWWalksN cclwwlkn 30003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-hash 14272 df-word 14455 df-concat 14512 df-substr 14582 df-pfx 14612 df-csh 14730 df-clwwlk 29961 df-clwwlkn 30004 |
| This theorem is referenced by: eleclclwwlknlem2 30040 |
| Copyright terms: Public domain | W3C validator |